
How Are Web APIs Versioned in Practice?
A Large-Scale Empirical Study

Souhaila Serbout and Cesare Pautasso
souhaila.serbout@usi.ch, c.pautasso@ieee.org

Software Institute (USI)

Abstract

Web APIs form the cornerstone of modern software ecosystems, facilitating
seamless data exchange and service integration. Ensuring the compatibility
and longevity of these APIs is paramount. This study delves into the intricate
realm of API versioning practices, a crucial mechanism for managing API
evolution. Exploring an expanded and diverse dataset of 603 293 APIs spec-
ifications created during the 2015-2023 timeframe and gathered from four
different sources, we examined the adoption of the following versioning prac-
tices: Metadata-based, URL-based, Header-based and Dynamic versioning,
with one or more versions in production. API developers use more than 50
different version identifier formats to encode information about the changes
introduced with respect to the previous version (i.e., semantic versioning),
about when the version was released (i.e., age versioning) and about which
phase of the API development lifecycle the version belongs (i.e., stable vs.
preview releases).

Keywords: API, Web API, OpenAPI, Empirical Study, Versioning.

1 Introduction

The continuous evolution of software is an integral aspect that applies also to
Web APIs [13, 18, 28]. A particular type of software meant to be integrated
and reused in various systems, Web APIs empower developers to build in-

River Journal, 1–42.
© 2024 River Publishers. All rights reserved.

2 S. Serbout

novative applications by leveraging data and services from various sources.
However, as these APIs evolve, developers face a challenge: how to introduce
changes without disrupting existing clients depending on them [15, 19, 24].
This challenge underscores the critical importance of API versioning.

API versioning [16] is a fundamental practice that enables API providers
to manage change effectively while ensuring compatibility with existing
clients. API providers often use version identifiers to make changes evident to
clients, allowing them to refer to specific versions of the API on which they
depend. In some cases, providers make multiple versions of the same API
available to ease the transition for clients as they switch from retired versions
to newer versions [21].

The lack of a centralized registry for Web APIs, combined with the flex-
ibility for service providers to use their own versioning approaches [25], has
led to multiple and sometimes inconsistent practices in terms of discoverabil-
ity and notification of breaking changes [11]. While versioning metadata is
required when describing Web APIs according to the OpenAPI specification,
developers use a variety of version identifier formats to express different con-
cerns: when was the API released, whether the API version is stable or still
a preview release, whether the changes introduced in the API are likely to
break clients. Such variability in versioning practices raises questions about
the prevalence of semantic versioning [1] adoption among Web APIs and how
to dynamically discover and select which API version is available at runtime.

While in our preliminary study [27] we focused on a single source of API
specifications, in this paper we have significantly broadened our OpenAPI
description dataset (from 186 259 to 602 859 specifications) to mitigate the
external threads to validity. In addition to GitHub, we mined SwaggerHub and
APIs.guru, some of the preeminent platforms for API specification sharing.
We have also fine-tuned our parser to detect 21 additional version identifier
formats (257 as opposed to 236 in [16]).

More in detail, we have also delved into the adoption of header-based
versioning practice, which involves including version information within
HTTP headers rather than in the API URL or metadata. A practice which
we did not cover in [16]. We observed a remarkable diversity in this practice,
with developers employing 126 distinct header names to convey versioning
information.

More in detail, we aim to answer the following research questions:
Q1: What are the commonly adopted practices for Web APIs versioning?
Q2: How do developers distinguish stable from preview releases?

How Are Web APIs Versioned in Practice? 3

Q3: To what extent is the practice of semantic versioning adopted in Web
APIs, and are there alternative versioning schemes in use?

Q4: What is the prevalence of APIs with multiple versions in production?
how many concurrent versions exist?

Q5: How has the adoption of dynamic versioning and header-based
versioning practices evolved over time?

Q6: How sensitive are the results to the source of the API descriptions ?
The remainder of this paper is organized as follows: Section 2 provides

some background on the topic of Web API versioning. Section 3, describes
the methodology used to collect and analyze the four datasets. The follow-
ing Section 4 presents the analysis results, structured around each versioning
practice. More precisely: Section 4.1 discusses the practice of metadata-based
versioning, where version identifiers are included within the API meta-
data. Section 4.2 explores URL-based versioning, where version identifiers
are embedded as part of endpoints URLs. Section 4.5 delves into header-
based versioning, where the desired version is specified using an HTTP
header. Section 4.6 discusses dynamic versioning, where version identifiers
are discovered by retrieving them from dedicated API endpoints. Section 4.7
examines the practice of having multiple versions of the same API available
in production simultaneously. Section 4.8 presents an analysis of the differ-
ent version identifier formats used over the years. Section 5 summarizes the
findings by answering the research questions, leading into a proposal for a
more structured representation of versioning metadata in the next revision of
the OpenAPI specification (Section 6). Related work is outlined in Section 7,
after which the paper concludes in Section 8 with a summary of the main
results and a discussion of future work.

A replication package is available on GitHub [2].

2 Background

2.1 Version Identifiers in Web APIs

In the realm of Web APIs, there exist various options for including a version
identifier, statically, as part of an API description, or dynamically, as part of
messages exchanged with the API. In this study we expect to find evidence
for the following practices:

https://github.com/souhailaS/-JWE-API-Versioning-practices-detection

4 S. Serbout

Figure 1: Tree visualization of the structure of a subset of the Vercel API [3].
Different version identifiers (v1-v12) are found in the path URL addresses.

• Metadata-based versioning: The version identifier is included within
the API metadata. This can be achieved using industry-standard formats

How Are Web APIs Versioned in Practice? 5

like the OpenAPI Specification, which provides a comprehensive description
of the API, including versioning details, in a machine-readable manner or
mentioning it on the API provider’s website or documentation.

• URL-based versioning: The version identifier expected by the client can
be embedded as part of HTTP request messages as a parameter or a segment
in the endpoint path URL, such as:

https://<server-address>/<path>?<query>

where:

<server-address> = <version-identifier>.<dns-domain>

<path> = <path>/<version-identifier>/<path> || <path> || ""

<query> = <query>&version=<version-identifier>&<query> || <query> || ""

For example:
https://v1.example.api/path

https://api.example.com/v1/path

https://api.example.com/?version=v1

Embedding version identifiers in endpoint URLs is commonly used also
when multiple versions of the API coexist simultaneously, known as the “two
in-production” pattern [21]. The API server employs the version identifier
found within the request to route the request to the appropriate API version.
For example, in the Vercel API 12 different versions are accessible to clients
(Fig. 1).

• Header-based versioning: Instead of embedding version information in
the URL or other parts of the request, when an API uses header-based ver-
sioning the client specifies the desired version using an HTTP header. This
type of versioning can be also applied at the operation level where the version
is specified in the header of the request associated with the operation, such as
the example in Listing .1.

Listing .1: Header-based versionin applied to certain API operations
name: x-ms-version

in: header

description: The version of the operation to use for this request

↪→ See https://docs.microsoft.com/en -us/rest/api/

↪→ storageservices/versioning -for -the -azure -storage -services

↪→ for details

required: false

schema:

type: string

6 S. Serbout

E.g., within our dataset, the Amaysim1 API serves as an illustrative
example. It implements the utilization of the accept-version header as
a mechanism for transmitting the version identifier conforming to Semantic
Versioning (SemVer). In the event that no header is explicitly provided, the
API defaults to invoking the latest available version:

One of the advantages of header based versioning is that the clients can
seamlessly switch between versions without modifying the request structure.
The server interprets the header to route the request to the appropriate version
of the API.

• Dynamic versioning: In APIs utilizing header-based versioning, devel-
opers must explicitly instruct API consumers on specifying the intended API
version in request headers. This information, encompassing the designated
header field (e.g., x-api-version) and the requisite version format (e.g.,
v1, 1.0), must be meticulously documented. API consumers are then tasked
with including the version data in the headers of their HTTP requests us-
ing the provided header name and value or the version query parameter.
For instance, the case of the GitHub API, developers are informed about
viable version header values through the invocation of a GET /versions end-
point. This endpoint facilitates the retrieval of a list encompassing available
version identifiers. Developers can thus reference this endpoint to ascertain
the valid version options for configuration within their request headers. This
practice augments transparency and streamlines the process of selecting and
incorporating appropriate API versions.

2.2 OpenAPI Versioning Metadata

API service providers typically provide API clients with information on
how to use the API through a description, which is often written in nat-
ural language [31] or based on a standard Interface Description Language
(IDL), such as OpenAPI [4]. This later has seena widespread adoption across
industries [17, 29, 30], which underscores its pivotal role in modern API
development and integration. It is also a form of documentation that is
machine-readable, enabling systematic analysis on a large scale.

OpenAPI offer a standardized, language-agnostic framework for doc-
umenting RESTful APIs, which facilitates clearer communication among
developers, accelerates development timelines, and ensures consistent API
implementation. Moreover, it includes a specific required field {"version":

1 https://www.amaysim.com.au/

https://github.com/psenger/product-offering-amaysim/blob/master/api/swagger.yaml

How Are Web APIs Versioned in Practice? 7

string} in the info section pertaining to the API’s metadata. However,
there are no constraints on the format used to represent the version identi-
fier. Additionally, version identifiers can be embedded in the API endpoint
addresses, which are stored in the server and path URLs.

While the OpenAPI standard defines how developers describe their APIs,
there is no centralized standard documentation manager service where de-
velopers can share API specifications. For example, SwaggerHub [5] does
not impose any rules on the format of version identifiers, nor does it require
developers to upgrade them when publishing a new version of the API de-
scription. We aim to study the resulting variety of version identifier formats
found in a large collection of OpenAPI descriptions.

2.3 API stable releases

API stable releases represent the versions of the API that are deemed ready
for use in production environments. These versions have undergone thorough
testing and are considered reliable and stable for use by clients. The version
identifiers for stable releases often convey important information about the
changes introduced in the release, the compatibility with previous versions,
and the maturity of the API.

In our study, we identified four primary fclasses of ormats for stable
release identifiers:

• Major Version Number: This format is characterized by a single in-
teger value that increments with each major release. It is a simplified form
of semantic versioning, focusing only on major changes that are likely to
be incompatible with previous versions. This format is straightforward and
easy to understand, but it does not provide detailed information about minor
updates or patches.

• Semver (Semantic Versioning): The goal of semantic versioning [1] is
to reflect the impact of API changes through the version identifier format
MAJOR.MINOR.PATCH. The MAJOR version counter is incremented when in-
compatible API changes were introduced, the MINOR counter is upgraded
when new functionalities were added without breaking any of the old ones,
and the PATCH increases for backwards compatible bug fixes.
Several widely known package managers, such as NPM [6], Maven [32], and
PyPI, adopt semantic versioning as a standard for package version identi-
fiers. These package managers enforce the usage of semantic versioning and
perform version increment checks every time the package is republished [14].

8 S. Serbout

We put under this category all the version identifiers that follow the semantic
versioning format, regardless of the number of digits used, starting from 2
digits.

• Date: Some APIs use the release date as the version identifier. This
format can take various forms, such as YYYY-MM-DD or YYYYMMDD. It
provides a clear timeline of API releases and is easy to understand. However,
it does not provide any information about the changes introduced in each
version.

• Tag: This format uses arbitrary word values as version identifiers, such
as: “latest”, “newest”, “test”, wich we found as the most common words.
This format provides the most flexibility, but it can also be the most difficult
to understand and manage, especially for large APIs with many versions.

2.4 API Preview Releases

Test releases are often given specific marketing names to clearly reflect their
purpose and distinguish them from stable releases. Marketing names help also
to indicate the audience of the test releases, and allow users to understand that
they should expect bugs [7, 8, 22].

In our datasets, we identified the following six types of usage for preview
release tags:

• Develop: A version under development is still in the process of being
created and is not yet complete or stable. It may contain new features or
bug fixes that have not yet been fully tested, and may not be suitable for use
in a production environment. Developers may use dev versions to test new
features and make changes before releasing a final version to the public.

• Snapshot: These versions are automatically built from the latest devel-
opment code and are intended to be used by developers.

• Preview: These are unstable versions that are made available to users
before the final release. Preview versions are typically released to a small
group of users or testers to gather feedback and iron out any bugs or issues
before the final release. They can also be used to give users a preview about
new features to expect to see in the next stable version.

• Alpha: These versions are considered to be very early in development
and are likely to be unstable and contain many bugs. They are often released
to a small group of testers for feedback.

• Beta: These versions are considered to be more stable than alpha ver-
sions and are often released to a wider group of testers for feedback. They
may still contain bugs, but they are expected to be closer to the final release.

How Are Web APIs Versioned in Practice? 9

• Release Candidate (RC): These versions are considered to be very close
to the final release and are often the last versions to be released before the final
version. They are expected to be stable and contain only minor bugs.

Our goal is to quantify how often such types of stable and pre-release
versions are found, and whether developers also use other kinds of tags to
classify their API versions.

3 Methodology

3.1 Dataset preparation

Our analysis was performed on OpenAPI specifications which we collected in
four datasets: GitHub (5 218 APIs, 165 939 commits); SwaggerHub (387 463
APIs), BigQuery (45 467 APIs), APIs.guru: (3 990 APIs), for a total of
602 859 API descriptions.

• GitHub: This historical dataset of 165 939 OpenAPI specifications, be-
longing to 5 218 APIs, was extracted from GitHub utilizing its API.
Our approach involved systematically querying the contents of JSON
and YAML files within the GitHub repositories. Upon detection of an
OpenAPI specification file, we embarked on the retrieval of its complete
version history, as well as its associated dependencies. Similar to pre-
vious works [13], also in this study we have included only APIs with
the entire history of valid specifications and at least 10 commits in their
version history, thereby filtering trivial or inconsequential repositories.

• SwaggerHub: We assembled an expansive dataset of OpenAPI speci-
fications sourced from SwaggerHub. Our data collection methodology
hinged on leveraging both the Swagger Proxy API and Swagger API
and tactically implemented strategies to ensure the efficient retrieval of
data while adhering to the API’s rate limits. Out of the retrieved 432 265
specifications, we could keep 387 463 unique and valid specifications.

• BigQuery: BigQuery is a fully managed, serverless data warehouse
and analytics platform that enables fast and scalable querying of large
datasets using SQL-like queries. It contains a snapshot of GitHub which
is updated on weekly basis [9]. We extracted OpenAPI files from
BigQuery utilizing a distinct methodology from that employed by Asset-
note’s team [10], who employed a query strategy targeting files named
”swagger.json”, ”openapi.json”, and ”api-docs.json”. This resulted in

10 S. Serbout

17 741 files (running the query the 8th, September 2023). This method
could potentially overlook numerous OpenAPI files, owing to the lack of
well-defined conventions or stipulations concerning file nomenclature.

Given that an OpenAPI file conforming to version 3.0 or later must in-
variably include the “openapi” key, or ”swagger” if aligning with version
2.0, along with the mandatory “paths” key, our query strategy involved
targeting files containing either of these key terms. As a result, we iden-
tified a total of 175 549 files, from which 45 467 represented unique and
valid OpenAPI specifications.

However using the BigQuery public GitHub dataset, it is not possible
to query the history of specific files, since the results do not contain the
needed pointers to retrieve the list of files affected by a specific commit
in a repository.

• APIs.Guru: This open-source project and community-driven platform
aims to provide a comprehensive, curated and up-to-date collection of
API specifications. We fetched the OpenAPI files discovered through
the APIs.guru API, as follows:

wget https://api.apis.guru/v2/list.json ; cat list.json | jq -r

’.[]["versions"][]["swaggerUrl"]’ > urls

wget -i urls

We found 3992 OpenAPI files, where only two were invalid and each
one belongs to a distinct API.

How Are Web APIs Versioned in Practice? 11

2015 2016 2017 2018 2019 2020 2021 2022 2023

0

0.2

0.4

0.6

0.8

1
·105

3
,6
9
2

6
,0
0
4

6
,3
3
7

1
1
,9
9
3

1
8
,1
3
7 3
0
,4
9
2

3
5
,3
4
4

4
3
,9
2
3

1
0
,0
0
2

1
,8
1
9

8
,0
1
1

3
6
,2
8
8 4
7
,3
1
3

5
1
,4
2
8

8
0
,2
2
5

7
8
,4
9
6

6
9
,5
5
1

3
1
,3
0
2

#A
PI

de
sc

ri
pt

io
ns

GitHub
SwaggerHub

Figure 2: Number of artifacts in the GitHub and SwaggerHub datasets over
the years

A distinctive feature of the GitHub dataset lies in the comprehensive his-
torical record of API specification commits, complete with their respective
timestamps. Conversely, the artifacts in the SwaggerHub collection include
metadata such as their creation date and the last modification date of the
specifications. In Figure 2, we give an overview of the yearly distribution
of the yearly APIs commits in the case of GitHub dataset and number of
APIs created every year in the case of SwaggerHub dataset. This will make it
possible to track the adoption of API versioning practices over the past years.

The approach of the analysis remains consistent across all the spec-
ification from all sources. Only the datasets obtained from GitHub and
SwaggerHub provided the necessary timestamps for the creation of specifi-
cations. Utilizing these timestamps enabled a time-series analysis to observe
the adoption patterns of dynamic versioning (referenced in section 4.6) and
to track the evolution in the adoption of diverse formats over time (detailed
in section 4.8).

3.2 Analysis methodology

To perform this study, we automated the extraction of versioning metadata
and the detection of different versioning practices by analyzing 602 859 API
specifications written in the OpenAPI description language [4].

12 S. Serbout

SwaggerHub

GitHub

BigQuery

APIs.guru

Dataset

Metadata Version Identifier Extractor

URL Version Identifier Extractor

Version identifiers

1

1

2

Version Headers Name Extractor Headers Names

2

1

Regex

Formats
Classifier

Classified Identifiers

2

1

1

2 2

1

3

3

3

Figure 3: Versioning Analysis Pipeline

Format Regular Expression

integer /^(\d{3}|\d{2}|\d{1})+$/i

v* /v\d*/i

semver-3 /^(v|)\d+\.\d+\.\d+$/i

date(yyyy-mm-dd) /^\d{4}-\d{2}-\d{2}/

semver-dev* /^(v|)\d+\.\d+(\.\d)*(\.|-)dev\d*$/i

semver-snapshot* /^(v|)\d+\.\d+(\.\d)*(\.|-)SNAPSHOT\d*$/i

date-preview* [date](-|\.)preview$/i
v*alpha* /^v\d+alpha\d*$/i

v*beta* /^v\d+beta\d*$/i

semver-rc*.* /^(v|)\d+\.\d+(\.\d)*-rc\d*\.\d+$/i

Table 1: Some detectors used to classify the version identifier formats

As depicted in Figure 3, we first retrieved 10 221 distinct version iden-
tifiers from the info.version field in each OpenAPI description in each
dataset (see the third column of Table 2 for the number of unique version
identifiers found in each dataset). We then searched for any of these identifiers
in the URL addresses listed as part of the endpoints or server URL strings.

To classify the version identifiers, we employed a set of regular expres-
sion rules (Table 1). These detectors were iteratively defined based on our
observations to ensure that most of the samples could be labeled. We also
distinguished between version identifiers used to describe preview releases
and stable versions of the APIs. The complete list of regular expression rules
are included in the replication package.

Given such variety of sources, we examine the specifications and present
the results collectively and individually, based on the origin of the specifica-
tions, to determine how the outcomes vary according to their sources.

https://github.com/souhailaS/-JWE-API-Versioning-practices-detection/blob/main/metadata-versions-merged.json
https://github.com/souhailaS/-JWE-API-Versioning-practices-detection/blob/main/metadata-versions-merged.json
https://github.com/souhailaS/-JWE-API-Versioning-practices-detection

How Are Web APIs Versioned in Practice? 13

4 Results

4.1 Metadata-based versioning

Metadata-based versioning involves encapsulating the API version identifier
within the API documentation itself. In the context of OpenAPI-documented
APIs, this approach is facilitated by a designated info.version field within
the specification. This field empowers developers to explicitly denote the ver-
sion of the web API being documented. By articulating the version as a string
in the OpenAPI specification, the practice of metadata-based versioning es-
tablishes a clear means to communicate and represent the API’s versioning
information.

4.1.1 Metadata-based versioning adoption overview
The info.version field, while obligatory for a valid specification,
is found to accommodate various values including empty strings and
certain other non-conforming string entries, such as: "", "null",

"undefined", "version unknown", "-", " ", "unknown",

"VERSION PLACEHOLDER", "no version", etc. These non-compliant
entries were identified and subsequently excluded and considered as no
metadata based versioning was used.

In Table 2, we report that the vast majority of artifacts (across all datasets,
more than 90%) makes use of metadata-based versioning. The number of
unique version identifiers detected within each dataset is listed in the third
column. The most common version identifier is 1.0.0, while v1 is the mostly
used one only in the APIs.guru, where 7% of the APIs which use metadata-
based versioning have the v1 identifier.

Dataset #APIs #Unique Version IDs Most Used ID #APIs

GitHub
5 107 (97.87%)

7 020 1.0.0
2 242

162 244 (97.77%) commits 42 416 commits

BigQuery 44 364 (89.94%) 1 941 1.0.0 4 987
SwaggerHub 381 437 (94.30%) 8 616 1.0.0 240 310
APIs.guru 3 988 (99.95%) 824 v1 275

Total 592 033 (98%) 10 221

Table 2: Number of artifacts featuring metadata-based versioning

14 S. Serbout

4.1.2 Version identifiers formats
Given that the version is represented as a string, discerning a consistent for-
mat for the extracted version identifier becomes a non-trivial task. To address
this challenge, we developed a parsing mechanism leveraging 257 regular
expressions. This tailored parser enables the detection and classification of
diverse version formats employed within the dataset, enhancing our ability
to systematically analyze and categorize the extracted version identifiers. In
Table 4, we present the top 20 frequently employed version identifier formats
observed in each of the the four study datasets.

The format semver-3 was found to be most frequent format. But, looking
at each dataset independently, we can see that the most frequently adopted
version identifier format varies depending on the source. For the SwaggerHub
dataset, the most common format is semver-3, accounting for 69.78% of the
total. Similarly, the semver-3 format is also the most prevalent in the GitHub
dataset, representing 61.68% of the total.

In contrast, the BigQuery dataset primarily uses the date(yyyy-mm-dd)
format, which constitutes 31.82% of the total. The APIs.guru dataset also
favors a date-based format, specifically date(yyyy-mm-dd), which accounts
for 39.77% of the total.

The Other category of formats encompasses all version identifier formats
that could not be classified due to their non-uniformity. These formats do not
adhere to any of the common versioning schemes such as Semantic Version-
ing or date-based versioning, and instead, they follow unique, custom formats
devised by the API developers. Its presence highlights the diversity and com-
plexity of versioning practices in the real-world APIs. It underscores the fact
that despite the existence of widely accepted versioning schemes, a con-
siderable number of APIs opt for custom, non-standard versioning formats.
However, the use of such formats can lead to inconsistencies, make version
management more complex, and potentially hinder the understanding and
usage of the API for developers. Therefore, while these non classifiable for-
mats represent a small proportion of the total, it is an important aspect of the
versioning landscape that warrants further investigation and understanding.

The formats are categorized based on the versioning scheme they adhere
to, such as Semantic Versioning (SemVer), date-based versioning, and others.
For each format, Table 5 lists the number of occurrences in each dataset.

Table 3 and 4, provides a detailed breakdown of the version identifier
formats used across the four datasets.

How Are Web APIs Versioned in Practice? 15

Figure 4: 20 most adopted version identifier formats used in metadata in each
of the study datasets and combined

4.2 URL-based versioning

URL-based versioning is a method of version control for web APIs where the
API version is incorporated directly into the URL structure. This version in-
formation can be embedded either in the API paths or within the DNS names.
When versioning is integrated into paths, it’s typically appended as a seg-
ment in the URL (e.g., api.example.com/v1/resource). Alternatively,
with DNS-based versioning, the version is encompassed in the subdomain
or domain (e.g., v1.api.example.com).

16 S. Serbout

Figure 5: Number of artifacts with version identifiers used in metadata of
stable and preview releases in each of the study datasets and combined

The deployment implications of these approaches vary. Path-based ver-
sioning grants greater flexibility and straightforward resource grouping.
However, it can potentially lead to longer URLs as versions accumulate.
DNS-based versioning, on the other hand, offers cleaner URLs and enables
physical separation of versioned APIs, but requires more elaborate DNS
configurations and management.

4.3 Path-based versioning

4.3.1 Path-based versioning adoption overview
Table 5 provides an overview of the adoption of path-based versioning across
the four datasets, showing that the most commonly used version identifier
in path-based versioning is ‘v1‘. The table differentiates between APIs that
include version identifiers within each individual path and those that employ
a global identifier attached to the server URL. The latter is located within the
servers field.

• In the SwaggerHub dataset, 15.11% of APIs use path-based versioning
with version identifiers in individual paths, and this percentage increases to

How Are Web APIs Versioned in Practice? 17

Format SwaggerHub BigQuery GitHub APIs.guru Combined
#APIs #Commits

Major version number 25 139 2 884 326 9 747 512 36 608

integer 11 328 470 85 1 400 119 13 402
v* 13 489 2 346 240 8 183 376 25 634
v*# 120 49 5 132 11 317
v*-# 202 19 1 32 6 260

SemVer 350 012 13 480 4 800 143 557 1 161 504 010

semver-2 60 576 3 706 1 146 35 351 341 101 120
semver-2# 1 090 66 19 361 6 1 542
semver-3 282 597 9 465 3 787 102 359 792 397 000
semver-3# 4 457 199 475 4 709 13 9 853
semver-4 1 169 39 13 777 9 2 007
semver-6# 2 3 - - - 5
semver-4# 49 - - - - 49
semver-5 60 - - - - 60
semver-5# 6 - - - - 6
semver-6 6 - - - - 6

Tag 266 27 8 92 1 394

latest* 124 13 8 92 1 238
test* 128 12 - - - 140
new* 11 - - - - 11

Date 1 059 16 140 53 827 1 628 18 707

date(yyyy-mm) 22 4 19 327 - 372
date(yyyy-mm-dd) 568 15 761 16 202 1 587 18 134
date(yyyy-mm-dd)-# 112 234 3 18 28 395
date(yyyy-mm-ddThh:mm:ssZ) - 60 16 262 3 341
date(yyyy.mm.dd) 124 46 1 8 7 186
date(yyyymmdd) 112 21 2 10 1 146
date(yyyy.mm) 10 3 - - 1 14
vdate(yyyy-mm-dd) 8 5 - - 1 14
date(yyyy) 87 - - - - 87
date(yyyy-mm-dd).hh.mm.ss 1 - - - - 1
date(yyyy-mm-dd hh:mm:ss) 5 1 - - - 6

Table 3: Number of artifacts with version identifiers used in metadata of sta-
ble releases in each of the study datasets and all combined

19.16% when considering APIs that also use a global identifier in the server
URL.

• The BigQuery dataset shows a similar trend, with 13.20% of APIs using
path-based versioning in individual paths, and 16.71% when including APIs
with a global identifier.

• The GitHub dataset shows a higher adoption rate of path-based ver-
sioning, with 27.37% of APIs using version identifiers in individual paths at

18 S. Serbout

Format SwaggerHub BigQuery GitHub APIs.guru Combined
#APIs #Commits

Develop 160 29 219 1 513 2 1 704

dev* 55 1 2 39 - 95
develop* 10 - 1 1 - 12
semver-dev* 66 12 217 1 473 1 1 552
v*dev* - 5 - - 1 6
semver-dev*.* 5 - - - - 5

Snapshot 977 52 64 313 1 1 343

semver-SNAPSHOT* 960 43 64 313 1 1 317
semver-SNAPSHOT*.* 2 - - - - 2

Preview 179 9 648 5 36 489 10 352

date(yyyy-mm-dd)-preview# 77 9 374 1 10 480 9 941
semver-preview* 23 128 1 12 6 169
semver-preview*.* 10 56 3 14 1 81
date(yyyy-mm-dd)-preview* 1 40 - - - 41
preview* 10 12 - - 1 23
semver-pre*.* 1 18 - - 1 20
semver-pre* 3 - - - - 3

Alpha 412 165 145 1 117 45 1 739

alpha* 50 5 2 27 2 84
semver-alpha* 161 18 25 551 - 730
semver-alpha*.* 45 1 118 472 - 518
v*alpha* 27 96 2 67 42 232
v*p*alpha* - 2 - - 1 3

Beta 456 555 42 942 132 2 085

beta* 91 3 2 68 2 164
semver-beta* 158 72 25 480 - 710
semver-beta*.* 27 3 3 10 - 40
v*.beta 3 - 11 364 - 367
v*beta* 24 383 2 20 119 546
semver (beta) - 7 - - - 7
v*p*beta* - 36 - - 11 47

Release Candidate 370 64 266 1 065 0 1 499

semver-rc* 176 5 9 107 - 284
rc* 19 1 1 15 - 35
v*rc* 15 2 1 10 - 27
semver-rc*.* 160 56 255 933 - 1 353

Table 4: Number of artifacts with version identifiers used in metadata of pre-
view releases in each of the study datasets and all combined

How Are Web APIs Versioned in Practice? 19

Dataset Location #APIs #Unique Most Used #APIs

SwaggerHub Only paths 57 518 (15,11 %) 464 v1 27 390
Paths + Servers 72 951 (19,16 %) 957 v1 30 193

BigQuery Only paths 6 001 (13,20 %) 203 v1 1 947
Paths + Servers 7 599 (16,71 %) 261 v1 2 605

GitHub Only paths 1 428 (27,37%) 124 v1 539
39 860 commits (23,93 %) 16 519 commits

Paths + Servers 1 793 (34,36%) 180 v1 861
51 113 commits (30,80 %) 24 055 commits

APIs.guru Only paths 935 (23,49 %) 138 v1 373
Paths + Servers 1 381 (34,69 %) 186 v1 480

Table 5: Number of artifacts featuring Path-based versioning across datasets

some point in their history, and 34.36% when considering APIs with a global
identifier.

• The APIs.guru dataset also shows a substantial adoption of path-based
versioning, with 23.49% of APIs using version identifiers in individual paths,
and 34.69% when including APIs with a global identifier.

4.3.2 Path-based versioning identifiers formats
The results in Table 6 provide an overview of the most adopted version
identifier formats appearing in paths across the study datasets. The table
presents the formats along with their occurrence in each dataset, expressed
as a percentage of the total number of APIs in the respective dataset.

The most common format across all datasets is v*, which represents a
version number prefixed with the letter ’v’. This format is prevalent in all
datasets, with the highest adoption in the GitHub dataset (11.96%), followed
by SwaggerHub (8.84%), APIs.guru (10.07%), and BigQuery (5.32%).

The “integer” format, denoting a numeric version identifier, is commonly
utilized, particularly in the SwaggerHub dataset. Additionally, the “test*”
format, likely indicative of versions used for testing, is prevalent in both
the SwaggerHub and BigQuery datasets. Semantic versioning is a favored
approach across all datasets, with “semver-2” and “semver-2#” formats fre-
quently used. The “latest*” format, suggesting the most recent API version,
appears less frequently in all datasets. The “version” format, acting as a place-
holder for version identifiers, is employed across all datasets but with lower
frequency. Notably, the ”preview*” format, signifying non-finalized versions,

20 S. Serbout

Figure 6: Most frequently adopted version identifier formats appearing in
Path in each of the study datasets and all combined

is present in all datasets except BigQuery, while the “alpha*” and “beta*”
formats, representing early version stages, see lesser usage across all datasets.

We systematically classified the identified versioning formats into distinct
categories, distinguishing between stable and unstable release classes. The
heatmap is Table 6 provides a detailed breakdown of the version identifiers
used in stable and preview releases across the study datasets. The table cat-
egorizes the identifiers into different formats. The table presents the number
of artifacts with each format in each dataset.

How Are Web APIs Versioned in Practice? 21

Table 6: Number of artifacts with Path-based versioning of stable and preview
releases Usage of one or multiple format categories in path-based versioning
of APIs with multiple versions in production in each dataset and all com-
bined

From Table 6, it is evident that “Major version number” and “Tag” are the
most commonly used formats in stable releases across all datasets (Table 7).
This suggests a preference for these formats in stable releases, possibly due
to their simplicity and straightforwardness.

In preview releases (Table 8), the “Preview”, “Alpha”, and “Beta” formats
are more prevalent. This indicates that these formats are commonly used
to denote early stages of the version lifecycle, where the API is still under
development and not yet finalized.

Regarding the “Others” category in Table 6 and Figure 7, it is worth not-
ing that this category includes version identifiers that do not fit into any of the
predefined formats. The high number of artifacts with the “Others” format
suggests a diverse range of versioning practices across the study datasets or
the fact that the paths are long enough to make it more probable to detect
identifiers that are not meant to be used for versioning purposes. This applies
also to the case of the “Tag” format.

22 S. Serbout

·104

3
9
4

1
9
,7
0
7

1
,9
2
3

1
,4
0
7

1
0
,3
5
7

1
,8
8
4

2
,1
2
7

1
,7
6
5

1
1
,1
7
2

1
2
,6
6
5

3
3
2

4
6
2

2

1
,7
3
2

4
0
8

1
,1
5
6

2
7
,2
1
5

N
um

be
ro

fA
rt

ifa
ct

s

Tag
Date

Dev
elo

p

Sna
ps

ho
t

Prev
iew

Alph
a

Beta

Rele
ase

Can
did

ate
Othe

r
0

1

2

3
Metadata-based versioning Path-based versioning

Figure 7: Comparing the adoption of the least used formats classed in
metadata-based and path-based versioning in all datasets combined. (Se-
mantic Versioning and Major Version Number have been omitted).

Further analysis is required to understand the specific characteristics and
patterns within the “Others” class. This could involve examining individual
API documentation or conducting interviews with API developers to gain
insights into their usage purpose.

4.4 DNS-based versioning

In DNS-based versioning, the version information is included in the server
DNS name.

Table 9 presents the number of APIs that use DNS-based versioning
across the four datasets, showing that DNS-based versioning is not as widely
adopted as path-based versioning.

Our analysis revealed that not many of the APIs documentation follow the
standard URL format RFC 3986. In OpenAPI formats without DNS name,
such as ‘‘/v1/users’’ or ‘‘/’’ are valid values for server URLs.

How Are Web APIs Versioned in Practice? 23

Format SwaggerHub BigQuery GitHub APIs.guru Combined
#APIs #Commits

Major version number 38 756 3 451 704 20 343 692 63 946

integer 3 465 107 48 1 587 10 5 217
v* 35 796 2 635 668 19 848 509 59 456
v*# 17 17 4 18 7 63

SemVer 2 833 225 36 1 680 36 4 810

semver-2 2 353 219 36 1 679 35 4 322
semver-3 479 5 1 1 1 487
semver-2# 4 1 0 0 0 5
semver-4 1 0 0 0 0 1

Tag 5 932 735 280 5 623 95 12 665

latest* 1 372 256 58 944 54 2 684
new* 1 748 68 88 1 580 17 3 501
test* 3 046 419 141 3 170 32 6 808

Date 238 73 0 0 21 332

date(yyyy-mm-dd) 159 65 0 0 21 245
date(yyyy) 69 0 0 0 0 69
date(yyyy-mm) 10 0 0 0 0 10
date(yyyymmdd) 1 0 0 0 0 1
date(yyyy-mm-dd)-# 0 1 0 0 0 1

Table 7: Number of artifacts with Path-based versioning of stable releases in
each of the study datasets

The low adoption rate of DNS-based versioning showed in Table 9 can be
attributed to the fact that not all developers use a URL with the DNS name in
the server field.

4.5 Header-based versioning

In Table 10 and Figure 8, we analyzed the approach’s prevalence across our
four datasets, investigated the header names used to denote API versions, and
identified the most common ones.

The results of our analysis indicate that the header-based versioning
approach is not as prevalent as path-based versioning. A wide variety of
header names used in the SwaggerHub dataset (Figure 8), indicating a lack
of standardization among the APIs adopting that practice.

In Figure 8 we depict the adoption of header-based versioning in the
SwaggerHub dataset over the years.

24 S. Serbout

Format SwaggerHub BigQuery GitHub APIs.guru Combined
#APIs #Commits

Develop 338 5 7 111 1 462

dev* 328 1 7 111 - 447
develop* 10 - - - - 10
v*dev* - 4 - - 1 5

Snapshot 0 0 1 1 0 2

semver-SNAPSHOT* - - 1 1 - 2

Preview 1 098 58 23 537 16 1 732

preview* 1 097 51 23 537 16 1 724
date(yyyy-mm-dd)-preview# - 7 - - - 7
semver-preview*.* 1 - - - - 1

Alpha 100 217 3 43 45 408

v*alpha* 80 209 3 43 43 378
alpha* 21 7 - - 1 29
v*p*alpha* - 1 - - 1 2

Beta 190 666 9 163 128 1 156

beta* 86 3 5 143 1 238
v*beta* 103 628 4 20 117 872
v*p*beta* - 35 - - 10 45
v*.beta 1 - - - - 1

Release Candidate 0 0 0 0 0 0

Table 8: Number of artifacts with Path-based versioning of preview releases
in each of the study datasets and all combined

Dataset #APIs #Distinct Version IDs Most used ID Occurrence (#APIs)

GitHub 3 (215 commits) 1 {version} 3
BigQuery 21 2 {version} 19
SwaggerHub 64 8 {version} 57
APIs.guru 10 1 {version} 10

Table 9: Number of APIs with DNS-based versioning

Header Name #APIs

api-version 84
x-api-version 73
app-version 22
x-app-version 17
Accept-version 13
appversion 9
accept-version 8
x-version 8
app version 6
x-version-api 5

126 Distinct Names 549

0

50

100

2015 2017 2019 2021 2023

5 · 10−2

0.1

#
A

PI
s

H
ea

de
r-

ba
se

d
ve

rs
io

ni
ng

H
ea

de
r-

ba
se

d
ve

rs
io

ni
ng

ad
op

tio
n

ra
te

(%
)

#APIs Adoption rate

Figure 8: Header-based adoption in SwaggerHub Dataset over the year over
the years

How Are Web APIs Versioned in Practice? 25

BigQuery #APIs

x-ms-version 6
x-api-version 2
x-ph-api-version 1
x-amz-fwd-header-x-amz-version-id 1
accept-version 1

GitHub #APIs

basiq-version 3
cdi-version 1
x-myobapi-version 1
apiversion 1
version 1
x-api-version 1

APIs.guru #APIs

x-ms-version 3
x-readme-version 1
trakt-api-version 1
x-amz-fwd-header-x-amz-version-id 1
x-je-api-version 1
zuora-version 1

Table 10: Adoption of header-based versioning across the study datasets:
BigQuery, GitHub and APIs.guru

4.6 Dynamic versioning

In this paper we examine the prevalence of APIs that offer endpoints for
retrieving either the current version or the list of available versions of the API.
Our work also delves into understanding the potential correlations between
the adoption of dynamic versioning strategies and the utilization of header-
based versioning in real-world APIs. In Table 11 we show the number of
APIs having one endpoint dedicated to fetch the current version/versions of
the API.

26 S. Serbout

Endpoint SwaggerHub BigQuery GitHub APIsguru

#API #Commits

GET /version 1185 435 67 2585 11
GET /versions 153 17 4 438 8

Table 11: Number of artifacts where dynamic version information endpoints
is detected

0

200

400

600

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

1

2

#
C

om
m

its

GET /version

0

200

400

600

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

1

2

GET /versions

A
do

pt
io

n
ra

te
(%

)

Figure 9: Dynamic versioning over the years in Github Dataset

0

50

100

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

1

2

#
C

om
m

its

GET /version

0

50

100

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0

1

2

GET /versions

A
do

pt
io

n
ra

te
(%

)

Figure 10: Dynamic versioning over the years in SwaggerHub Dataset

How Are Web APIs Versioned in Practice? 27

The GET /version endpoint, which retrieves the current version of the
API, is more prevalent across all datasets. In the SwaggerHub dataset, 1185
APIs provide this endpoint, while in the BigQuery, GitHub, and APIsguru
datasets, 435, 67, and 11 APIs provide this endpoint, respectively. On the
other hand, the GET /versions endpoint, which retrieves the list of avail-
able versions of the API, is less common. In the SwaggerHub dataset, only
153 APIs provide this endpoint. Similarly, in the BigQuery, GitHub, and
APIsguru datasets, only 17, 4, and 8 APIs provide this endpoint, respectively.
These results suggest that while some APIs provide dynamic versioning ca-
pabilities, the majority of APIs prefer to provide only the current version
information. This could be due to the simplicity and lower maintenance over-
head of only managing a single current version. However, providing a list of
available versions can offer more flexibility to the clients, allowing them to
choose the most suitable version for their needs.

Figures 9 and 10 illustrate the adoption of dynamic versioning over the
years in the Github and SwaggerHub datasets, respectively. Figure 9, the
adoption of the GET /version endpoint in the Github dataset has been rela-
tively very low and non-stable over the years. On the other hand, the adoption
of the GET /versions endpoint has been minimal, with a small increase
starting from 2020. In Figure 10, we can observe that the adoption of the GET
/version endpoint in the Github dataset has been relatively very low and
stable over the years. On the other hand, the adoption of the GET /versions

endpoint has been minimal all the time.
It is also worth noting that the adoption of dynamic versioning strate-

gies does not seem to correlate with the use of header-based versioning.
We anticipated discovering a correlation between the utilization of header-
based versioning and dynamic versioning. However, our analysis revealed
that this correlation was relatively scarce, with only seven APIs (comprising
six from BigQuery and one from SwaggerHub) where these two practices
were employed concurrently.

We looked at the correlation between the usage of dynamic versioning and
query parameters where the clients can send the version identifier. Within the
APIs that feature dynamic versioning, we found 146 APIs in SwaggerHub,
320 APIs in BigQuery, 12 APIs in GitHub dataset (223 commits), and three
APIs in APIs.guru dataset that have version query parameters in at least one
operation.

28 S. Serbout

2 3 4 5 6 7 8 9 10 11 12

0

0.5

1

1.5

·104

#Distinct Identifiers in Versioned Paths

N
um

be
ro

fA
rt

ifa
ct

s

Major version number

Other formats

Figure 11: The adoption of major
version number vs other formats in
identifiers found in the paths of APIs
with multiple versions in production
in all datasets combined

2 3 4 5 6 7 8 9 10 11 12

0

0.5

1

1.5

·104

#Distinct Identifiers in Versioned Paths
N

um
be

ro
fA

rt
ifa

ct
s

One format category

Two format categories

Three or more fmt. categories

Figure 12: Usage of one or multi-
ple format categories in path-based
versioning of APIs with multiple ver-
sions in production in all datasets
combined

2 3 4 5 6 7 8 12

0

50

100

#Distinct Identifiers in Versioned Paths

#A
PI

s

APIs.guru

One format category

Two format categories

Three or more fmt. categories

2 3 4 5 6 7 8 11

0

500

#Distinct Identifiers in Versioned Paths

#A
PI

s

BigQuery

2 3 4 5 6 7 8 9 11

0

2,000

4,000

6,000

#Distinct Identifiers in Versioned Paths

#C
om

m
its

GitHub

2 3 4 5 6 7 8 9 10111213

0

2,000

4,000

6,000

8,000

#Distinct Identifiers in Versioned Paths

#A
PI

s

Swagger

Figure 13: Usage of one or multiple format categories in path-based version-
ing of APIs with multiple versions in production

How Are Web APIs Versioned in Practice? 29

4.7 “Two in production” Evolution Pattern

We analyzed the usage of the “two in production” evolution pattern [21, 33]
across the four study datasets by examining the APIs that have paths with
distinct version identifiers.

The examination involved an analysis of specifications containing de-
scriptions of various API versions. This analysis was predicated on the
assumption that the presence of multiple versions within these specifications
implied the coexistence of these API versions in a production environment.

As demonstrated in the bar charts of Figures 11 and 12, our analysis
revealed the presence of 22 632 adoptions the ”two in production” evolution
pattern: 11 870 in SwaggerHub, 9 465 commits in GitHub, 1 139 in BigQuery,
and 158 in APIs.guru collection (See Figures 13 and 14). in productions
APIs across all the collections. Notably, among these APIs of having more
than 2 versions concurrently active. 419 APIs from BigQuery and 219 APIs
from SwaggerHub exhibited the noteworthy characteristic of using different
formats for each version.

As illustrated in Figure 11, for APIs maintaining two versions in produc-
tion, approximately 51% employ the Major Version Number as the format
for the version identifier within the paths. This rate of adoption remains
consistent for scenarios involving three to six concurrent versions. Beyond
this range, the Major Version Number becomes the sole versioning format
utilized.

The results presented in Figure 13 provide insights into the usage of
multiple format categories in path-based versioning of APIs that adopt the
”two in production” evolution pattern in each dataset sparately, where we can
see that the adoption of Major Version Number slightly differs in the case of
BigQuery.

In the APIs.guru dataset, the majority of APIs (79) use only one format
category, while a smaller number (28) use two format categories. Only a very
small number of APIs (2) use three or more format categories.

A similar pattern is observed in the BigQuery dataset, with a majority
of APIs (563) using one format category, a smaller number (320) using two
format categories, and a very small number (8) using three or more format
categories.

In the GitHub dataset, the majority of APIs (5 120) use one format cat-
egory, while a smaller number (902) use two format categories. Only a very
small number of APIs (31) use three or more format categories.

30 S. Serbout

2 3 4 5 6 7 8 12

0

50

100

#Distinct Identifiers in Versioned Paths

#A
PI

s
APIs.guru

Major version number
Other formats

2 3 4 5 6 7 8 11

0

500

#Distinct Identifiers in Versioned Paths

#A
PI

s

BigQuery

2 3 4 5 6 7 8 9 11

0

2,000

4,000

6,000

#Distinct Identifiers in Versioned Paths

#C
om

m
its

GitHub

2 3 4 5 6 7 8 9 10111213

0

2,000

4,000

6,000

8,000

#Distinct Identifiers in Versioned Paths

#A
PI

s

swaggerhub

Figure 14: Comparing the adoption of major version number vs other formats
in identifiers found in the paths of APIs with multiple versions in production

In the Swagger dataset, the majority of APIs (6641) use one format cat-
egory, while a smaller number (1339) use two format categories. A slightly
larger number of APIs (87) in this dataset use three or more format category
compared to the other datasets.

Wile the use of multiple format categories in path-based versioning is
not uncommon, the majority of APIs prefer to use a single format category.
This could be due to the simplicity and consistency offered by using a single
format category.

In Figure 12, we quantify the number of APIs employing precisely one,
two, or three or more format combinations for APIs with more than one
version in production. It is evident that, in the majority of instances, APIs
tend to use no more than one format for versioning.

How Are Web APIs Versioned in Practice? 31

The results presented in Figure 14 provide a comprehensive overview of
the version formats used in APIs that adopt the ”two in production” evolution
pattern in each of the datasets separately.

In the APIs.guru dataset, the majority of APIs (4470) use the ”Major ver-
sion number”format, while a smaller number (3511) use other formats. This
trend is also observed in the BigQuery dataset, with a majority of APIs (2611)
using the ”Major version number”format, and a smaller number (3411) using
other formats.

In the GitHub dataset, a similar pattern is observed, with a majority of
APIs (199) using the ”Major version number”format, and a smaller number
(692) using other formats. However, in the Swagger dataset, the use of the
”Major version number”format (4470) is almost equal to the use of other
formats (3511).

These results suggest that while the Major version number format is
the most commonly used format in path-based versioning, a significant num-
ber of APIs also use other formats. This could be due to the flexibility and
adaptability offered by these other formats, allowing API developers to tailor
their versioning strategy to the specific needs and requirements of their API.

4.8 Version Formats adoption over the years

Figure 15 shows that in 2015 Semantic Versioning (SemVer) held sway as
the predominant versioning format, constituting the choice in 59% of the
analyzed APIs, while the utilization of the Major Version Number format ac-
counted for 38.11% of the cases. However, an observable shift occurred in the
subsequent years. Notably, there was a conspicuous decline in the adoption of
the simplified format, characterized by solely the major version number, ac-
companied by a notable resurgence in SemVer adoption during the year 2017.
Nonetheless, the substantial surge in SemVer adoption observed in 2017 was
not sustained in the subsequent years. Instead, SemVer’s adoption exhibited
a relatively stable trajectory over the years, punctuated by occasional slight
declines noted in 2021 and 2022.

32 S. Serbout

0

2

4

6

8
20

15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0%

50%

100%
·104

#
A

PI
s

us
in

g
fo

rm
at

A
PI

s
us

in
g

fo
rm

at
(%

)

SwaggerHub

SemVer Major Date

0

2

4

6

8

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

0%

50%

100%
·104

A
PI

s
us

in
g

fo
rm

at
(%

)

GitHub

SemVer (%) Major (%) Date (%)

Figure 15: Adoption of Semantic Versioning, Major version number and Date
formats over the years

5 Results Summary

Q1: What are the commonly adopted practices for Web APIs versioning?
Based on our analysis investigating the adoption of the versioning practices:
metadata-based, URL-based, header-based, and dynamic versioning, we de-
tected the usage of these practices with different frequencies across the four
study datasets. Metadata-based versioning, where the version information is
included in the API metadata, is prevalent in 98% of the APIs. This practice is
favored due to its simplicity and the ease of managing version information in
a centralized location. URL-based versioning, where the version information
is included in the URL of the API, is adopted in 26.23% of the APIs. This
practice offers the advantage of making the version information immediately
visible and accessible to the clients. Header-based versioning, where the ver-
sion information is included in the HTTP headers, is less common, being used
in only 0.17% of the APIs. This could be due to the additional complexity
it introduces in managing version information. Lastly, dynamic versioning,
where the version information is discovered dynamically at runtime, is used
in a minority of APIs (1088 APIs in all datasets).

Q2: How do developers distinguish stable from preview releases?
Developers distinguish between stable and preview releases primarily
through the use of specific version identifier formats. Our analysis of the
study datasets revealed that the“Major version number” and “Tag” formats

How Are Web APIs Versioned in Practice? 33

are the most commonly used in stable releases across all datasets. This sug-
gests a preference for these formats in stable releases, possibly due to their
simplicity and straightforwardness. In contrast, the “Preview”, “Alpha”, and
“Beta” formats are more prevalent in preview releases. This indicates that
these formats are commonly used to denote early stages of the version life-
cycle, where the API is still under development and not yet finalized. For
instance, in the SwaggerHub dataset, the “semver-beta*.*” format was used
in 27 APIs, the “v*.beta” format in 3 APIs, and the “v*beta*” format in 24
APIs.

Q3: To what extent is the practice of semantic versioning adopted in Web
APIs, and are there alternative versioning schemes in use?
Semantic versioning (SemVer) is found to be widely adopted practice in Web
APIs. Our analysis shows that in 2015, SemVer was the predominant version-
ing format, used in 59% of the analyzed APIs. However, its adoption has seen
some fluctuations over the years. For instance, in 2017, there was a significant
increase in SemVer adoption, reaching 89.12% of the APIs. However, this
surge was not sustained in the subsequent years, with a slight decline noted in
2021 and 2022. Despite these fluctuations, SemVer remains a popular choice,
with its adoption rate in 2023 standing at 87.60%.
In terms of alternative versioning schemes, the Major Version Number format
is the second most common, used in 38.11% of APIs in 2015. However,
its adoption has seen a decline over the years, dropping to 5.70% in 2023.
Another alternative is the Date format, which, although less common, has
seen a tiny slight increase in adoption, from 0.17% in 2015 to 0.36% in 2023.
These findings suggest that while SemVer is the most prevalent versioning
scheme, there is a diversity of practices in Web API versioning, with some
APIs opting for alternative schemes such as the Major Version Number or
Date formats.

Q4: What is the prevalence of APIs with multiple versions in production?
how many concurrent versions exist?
Our analysis shows the presence APIs have multiple versions in production
concurrently in all the dataset. Specifically, 14.29% of the APIs in the Swag-
gerHub dataset, 5.50% in the BigQuery dataset, 6.99% in the GitHub dataset,
and 3.96% in the APIs.guru dataset have multiple versions in production.
In terms of the number of concurrent versions, our analysis reveals a wide
range. The majority of APIs with multiple versions in production have be-
tween 2 to 5 concurrent versions. However, there are also APIs with a high
number of concurrent versions. For instance, in the SwaggerHub dataset, the
maximum number of concurrent versions found in an API is 13. This suggests

34 S. Serbout

that some APIs maintain a large number of versions in production, possibly
to cater to a wide range of clients with different version requirements.

Q5: How has the adoption of dynamic versioning and header-based
versioning practices evolved over time?
Our analysis reveals interesting trends in the adoption of dynamic version-
ing and header-based versioning practices over time. Dynamic versioning,
despite its potential benefits of flexibility and adaptability, is used in a
minority of APIs across all datasets. This could be attributed to the addi-
tional complexity and overhead associated with managing dynamic version
information.
On the other hand, header-based versioning, where the version information
is included in the HTTP headers, is even less common. This could be due
to the additional complexity it introduces in managing version information.
However, it is worth noting that the adoption of dynamic versioning strate-
gies does not seem to correlate with the use of header-based versioning.
We anticipated discovering a correlation between the utilization of header-
based versioning and dynamic versioning. However, our analysis revealed
that this correlation was relatively scarce, with only seven APIs (comprising
six from BigQuery and one from SwaggerHub) where these two practices
were employed concurrently.
Wile there is a diversity of practices in Web API versioning, the adoption of
dynamic and header-based versioning practices has remained relatively low
over the years. This highlights the need for further research to understand the
factors influencing these adoption trends.

Q6: How sensitive are the results to the source of the API descriptions?
The results show some sensitivity to the source of the API descriptions. For
instance, the adoption rate of Semantic Versioning (SemVer) in the Swagger-
Hub dataset was 87.60% in 2023, while in the GitHub dataset, it was 90.77%.
Similarly, the adoption rate of the Major Version Number format was 5.70%
in the SwaggerHub dataset and 4.32% in the GitHub dataset in 2023.
Figure 16, depict the adoption of identifiers format in Metadata-based ver-
sioning in each of the four dataset. The adoption dominance of each format
follows the same order in the case of BigQuery and APIs.guru datasets, where
the most common one is “Date”, followed by “Semever”. Another particu-
lar noticed aspect is the presence of a relatively hight number of “Preview”
identifiers.
The higher prevalence of the “Preview” identifiers in the BigQuery and
APIs.guru datasets could be indicative of the experimental nature of many
APIs on these data sources.

How Are Web APIs Versioned in Practice? 35

6
.2
1

5
.8
2

6
.2
5

1
2
.8
3

8
6
.4
3

2
7
.2
2

9
2
.0
2

2
9
.1

7
·1

0
−

2

0
.1
5

0
.1
5

3
·1

0
−

2

0
.2
6

3
2
.5
9

1
.0
2

4
0
.8

4
·1

0
−

2

6
·1

0
−

2

4
.2

5
·1

0
−

2

0
.2
4

0
.1 1
.2
3

3
·1

0
−

2

4
·1

0
−

2

1
9
.4
8

0
.1

1
2
.2
6

0
.1

0
.3
3

2
.7
8

1
.1
3

0
.1
1

1
.1
2

0
.8
1

3
.3
1

9
·1

0
−

2

0
.1
3

5
.1

A
do

pt
io

n
ra

te
(%

)

SwaggerHub BigQuery GitHub APIs.guru

0

20

40

60

80

Major version number SemVer Tag Date Develop
Snapshot Preview Alpha Beta Release Candidate

Figure 16: Adoption of different format categories in each dataset in Meta-
data based versioning

On the other hand, the SwaggerHub and GitHub datasets show a higher
prevalence of the “SemVer” identifiers.
In terms of the “Major Version Number” format, its adoption is relatively con-
sistent across all all of SwaggerHub, GitHub and BigQuery datasets, ranging
from 5.82% in the GitHub dataset to 6.25% in GitHub. While in APIs.guru
dataset, the adoption rate of this format goes up to 12.83%.
Figure 17 shows the the common traits between versioning formats in some
of the datasets in Meta-data-based versioning are not present in the case of
Path-based versioning.

36 S. Serbout

7
.2
9

0
.4
4

1
2
.6
1

1
8
.1

0
.4
6

2
·1

0
−

2

1
.0
1

0
.9
31
.4
9

0
.1
7

3
.3
9

2
.4
6

0
.1
5

0 0

0
.5
5

1
·1

0
−

2

0 7
·1

0
−

2

3
·1

0
−

2

0 0 0 00
.1
2

1
·1

0
−

2

0
.3
2

0
.4
3

0
.4
4

0 3
·1

0
−

2

1
.1
8

1
.3
5

1
·1

0
−

2

0
.1

3
.2
8

3
.5
1

0
.3
2

8
.3
3

2
.8
1

A
do

pt
io

n
ra

te
(%

)

SwaggerHub BigQuery GitHub APIs.guru

0

2

4

6

8

10

12

14

16

18

Major version number SemVer Tag Date Develop
Snapshot Preview Alpha Beta Other

Figure 17: Adoption of different format categories in each dataset in Path-
based versioning

These differences suggest that while the overall trends in versioning practices
are similar across different sources of API descriptions, there are some vari-
ations in the specific adoption rates. This could be due to differences in the
communities of developers contributing to these sources, their preferences,
and their familiarity with different versioning schemes.

How Are Web APIs Versioned in Practice? 37

6 Web API versioning in OpenAPI 4.0: proposal

The diversity of formats found in in the info.version field of the OpenAPI
specification is due to the way to document API versioning in OpenAPI,
which does not provide any information about the type of versioning adopted
by the API, such as semantic versioning, date-based versioning, or custom
versioning. It also does not explicitly support the use of multiple versions
of the API specification in the same document, which can be useful for
documenting deprecated or experimental features.

Introducing standardized metadata fields for version identifiers in the
OpenAPI specification would significantly enhance clarity and interoperabil-
ity across web APIs. By clearly defining the type of versioning adopted—be
it semantic, date-based, or custom—developers and tools can more easily
understand and manage API versions. This standardization would facilitate
automated tools in accurately interpreting version changes, thereby improv-
ing API documentation, and would aid in the seamless integration of APIs
with differing versioning schemes.

In our proposal in Listing .2, the existing info.version field would
change type from string to an object that comprises the value field to spec-
ify the version identifier string, the schema field to document and enforce a
precise, structured version format, and the upgrade field to define the version
upgrade rules that should be followed, depending on the chosen format. In
addition, for recording the release date, we introduce a timestamp so that the
age of the API release can be tracked explicitly. Likewise, tags can represent
the lifecycle phase to which the artifact belongs. A separate build counter can
complement the timestamp so that DevOps pipelines can use a fine-grained
identifier to stamp each artifact version without affecting the main version
identifier.

Listing .2: Proposal for web API version in OpenAPI
version:

semantic -identifier: 1.2.3 # Semantic version identifier

↪→ value

lifecyle: "stable" # stable , preview , rc, alpha , beta

timestamp: YYYY -MM-DD HH:MM:SS # optionally track the API

↪→ release age

build: NNNN # an integer build counter

By knowing the versioning strategy (such as semantic versioning, date-
based versioning, or custom versioning), API consumers can better anticipate
the nature of changes and updates. This aids in planning for potential compat-
ibility issues and migration efforts. The specification can serve as a reference

38 S. Serbout

point for all API development team members, making it clear how version
numbers are assigned and what each increment signifies.

7 Related Work

In our previous paper [27], we evaluated the prevalence of Semantic Ver-
sioning (SemVer) in API versioning, focusing on the utilization of the
info.version field in stable API releases committed to GitHub between
2015 and 2022. Our findings indicated a strong adoption rate of SemVer in
stable releases, averaging at 75.84% ± 4.79%. In this paper, we study the
adoption of all of SemVer, Major Version Number, and Date formats using
he largest dataset we have which is the SwaggerHub. A notable characteristic
of this dataset is the inclusion of a key temporal markers for each API speci-
fication:created at, which could be extracted using the SwaggerHub API.
These dated denote the precise moments of the specification’s creation date

In previous work on Web API evolution [13] we studied the API size
changes over time, without considering how developers tend to summarize
these changes through versioning. Other studies have investigated the re-
lationship between software changes and versioning for software libraries
published in package management tools [23, 32], our work takes a different
approach by focusing exclusively on the evolution of the interface due to the
limitations and challenges posed by the lack of access to the corresponding
backend implementation code for Web APIs. These results highlight the need
for further research on the impact of different versioning practices on API
and backend development.

In the study conducted by Dietrich et al. [14], the authors aimed to analyze
versioning practices in software dependency declarations. To do this, they
leveraged a rich dataset collected from the libraries.io repository, which
contained metadata from 71 884 555 packages published on 17 different
package management platforms, including Home-brew, Maven, and NPM,
along with their respective dependency information. The authors employed a
similar approach with detectors based on regular expressions to categorize the
dependency versions into 13 different formats. Their findings revealed that
the majority of package managers predominantly use flexible dependency
version syntax, with a considerable uptake of semantic versioning in case of
Atom, Cargo, Hex, NPM, and Rubygems. Additionally, a survey of 170 de-
velopers showed that they rarely modified the declared dependencies’ version
syntax as the project evolved.

How Are Web APIs Versioned in Practice? 39

In a separate study [12], the author focused on the versioning practices
adopted by developers when using continuous integration services such as
GitHub Actions. The results indicated that 89.9% of the analyzed version tags
followed GitHub’s recommendation of only referring to the major version
in the identifier, with only a small fraction (0.9%) including minor version
information and 9.2% using the SemVer-3 format. This differs from our find-
ings, where we found that SemVer-3 was the most widely adopted semantic
versioning format.

Several studies investigated on the correlation between software changes
and versioning in the case of libraries published in packages manager
tools [23, 26, 32]. Most recent one is by L.Ochoa et al. [23] who replicated a
previous study performed by Raemaekers et al. [26] studying the level of
adherence to semantic versioning and the impact of breaking changes on
clients. They found that 83.4% of all packages upgrades do comply with
semantic versioning principles. And, 20.1%of non-major releases are actually
introducing backward incompatible changes. They also found an increase of
adherence and reduction of semantic versioning misuses: from 67.7% non-
major breaking releases in 2005 to 16.0% in 2018. Another recent study on
the accuracy of semantic version upgrades is [32], where the authors did not
only study the changes happening at the API level, but looked at the internal
code behaviour to understand the breaking problems happening in the case of
compatible version upgrades (when only MINOR or PATCH are upgraded). By
analysing 180 real-world examples with breaking problems, they computed
the probabilities of different types of changes (e.g: additional parameter,
additional branch, additional try/catch) to trigger backward incompatibility
issues.

In [20], the authors studies the compliance to SemVer in GoLang ecosys-
tem, focusing on breaking changes and their impacts. The authors developed
a tool, GoSVI (Go Semantic Versioning Insight), to detect breaking changes
by analyzing the types of identifiers in client programs and comparing them
withh breaking changes. They collected a dataset from GitHub, including
124K third-party libraries (TPLs) and 532K client programs, to analyze
SemVer compliance and the impact of breaking changes. Their findings in-
dicate that 86.3% of library upgrades follow SemVer compliance, yet 28.6%
of non-major upgrades introduce breaking changes. They also found an im-
provement in SemVer compliance over time and identified that 33.3% of
downstream client programs could be affected by breaking changes.

40 S. Serbout

8 Conclusion

Versioning in Web APIs is a fundamental practice to ensure their compati-
bility and ease their maintainability. In this empirical study we focused on
version identifiers, observing their representation formats, static or dynamic
discoverability, and purpose across 4 different datasets of 602’859 OpenAPI
descriptions. The vast majority utilized static versioning in the API metadata
(592 033; 98%), while only a subset include version identifiers embedded in
the API endpoint path URL addresses (133 456; 22%). Only a small fraction
(4 219; 0.7%) supported dynamic discovery of the current version through a
dedicated endpoint.

In terms of version format, we identified 10 221 distinct version identifiers
and 59 distinct formats (28 stable, 30 preview, and other) used to distinguish
stable and preview releases, with 23 251 pre-release versions across different
stages of the API release lifecycle. While most APIs use semantic version
identifiers to indicate the expected impact on clients of changes with respect
the previous version, a few instead use version identifiers to track the age of
the API.

We also observed the usage of the “two in production” evolution pattern
in 13501 APIs (4 250 with more than 2 versions): 158 in APIs.guru, 1139 in
BigQuery, 365 (with 9 465 commits) in GitHub, and 11 839 in SwaggerHub.
In these cases, the most prevalent format for version identifiers attached to
the path was to reference only the major version.

As future work, we plan to further investigate the adherence of developers
to semantic versioning guidelines and study the types of API changes that
drive major or minor version changes.

Acknowledgements

This work is funded by the SNSF, with the API-ACE project nr. 184692.

References

[1] Semantic Versioning. https://semver.org/.
[2] https://github.com/USI-INF-Software/API-Versioning-practices-detection.
[3] Vercel API. https://vercel.com/docs/rest-api/endpoints.
[4] OpenAPI Initiative. https://www.openapis.org/.
[5] SwaggerHub API. https://app.swaggerhub.com/apis-docs/swagger-hub/

registry-api/1.0.67.
[6] https://docs.npmjs.com/about-semantic-versioning.
[7] Release naming conventions. https://www.drupal.org/node/1015226.

https://semver.org/
https://github.com/USI-INF-Software/API-Versioning-practices-detection
https://vercel.com/docs/rest-api/endpoints
https://www.openapis.org/
https://app.swaggerhub.com/apis-docs/swagger-hub/registry-api/1.0.67
https://app.swaggerhub.com/apis-docs/swagger-hub/registry-api/1.0.67
https://docs.npmjs.com/about-semantic-versioning
https://www.drupal.org/node/1015226

How Are Web APIs Versioned in Practice? 41

[8] https://docs.fedoraproject.org/en-US/packaging-guidelines/

Versioning/.
[9] Google BigQuery. https://github.com/topics/bigquery.

[10] Contextual Content Discovery: You’ve forgotten about the API endpoints. https://
blog.assetnote.io/2021/04/05/contextual-content-discovery/.

[11] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How to
break an API: cost negotiation and community values in three software ecosystems.
In Proc. 24th International Symposium on Foundations of Software Engineering, pages
109–120, 2016.

[12] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh. On the use
of github actions in software development repositories. In International Conference on
Software Maintenance and Evolution (ICSME), pages 235–245, 2022.

[13] Fabio Di Lauro, Souhaila Serbout, and Cesare Pautasso. A large-scale empirical as-
sessment of web api size evolution. Journal of Web Engineering, 21(6):1937–1980,
2022.

[14] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe. Depen-
dency versioning in the wild. In Proc. 16th International Conference on Mining Software
Repositories (MSR), pages 349–359, 2019.

[15] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web api growing pains:
Loosely coupled yet strongly tied. Journal of Systems and Software, 100:27–43, 2015.

[16] Anthony Giretti. API versioning. In Beginning gRPC with ASP.NET Core 6, pages
223–237, 2022.

[17] Elias Grünewald, Paul Wille, Frank Pallas, Maria C Borges, and Max-R Ulbricht. Tira:
an openapi extension and toolbox for gdpr transparency in restful architectures. In 2021
IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), pages
312–319. IEEE, 2021.

[18] Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. Web api evolution
patterns: A usage-driven approach. Journal of Systems and Software, 198:111609, 2023.

[19] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. How does web service api evolution
affect clients? In 2013 IEEE 20th International Conference on Web Services, pages
300–307. IEEE, 2013.

[20] Wenke Li, Feng Wu, Cai Fu, and Fan Zhou. A large-scale empirical study on semantic
versioning in golang ecosystem. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1604–1614. IEEE, 2023.

[21] Daniel Lübke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun, and Mirko Stocker. In-
terface evolution patterns: balancing compatibility and extensibility across service life
cycles. In Proc. 24th EuroPLoP, 2019.

[22] Klaus Marquardt. Patterns for software release versioning. In Proc. of the 15th European
Conference on Pattern Languages of Programs (EuroPLoP), 2010.

[23] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen Vinju. Breaking bad? se-
mantic versioning and impact of breaking changes in maven central. Empirical Software
Engineering, 27(3):1–42, 2022.

[24] Lianyong Qi, Houbing Song, Xuyun Zhang, Gautam Srivastava, Xiaolong Xu, and Shui
Yu. Compatibility-aware web api recommendation for mashup creation via textual de-
scription mining. ACM Transactions on Multimidia Computing Communications and
Applications, 17(1s):1–19, 2021.

https://docs.fedoraproject.org/en-US/packaging-guidelines/Versioning/
https://docs.fedoraproject.org/en-US/packaging-guidelines/Versioning/
https://github.com/topics/bigquery
https://blog.assetnote.io/2021/04/05/contextual-content-discovery/
https://blog.assetnote.io/2021/04/05/contextual-content-discovery/

42 S. Serbout

[25] Mikko Raatikainen, Elina Kettunen, Ari Salonen, Marko Komssi, Tommi Mikkonen, and
Timo Lehtonen. State of the practice in application programming interfaces (APIs): A
case study. In Proc. 15th European Conference on Software Architecture (ECSA), pages
191–206, 2021.

[26] Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic versioning and impact
of breaking changes in the maven repository. Journal of Systems and Software, 129:140–
158, 2017.

[27] Souhaila Serbout and Cesare Pautasso. An empirical study of web api versioning
practices. In International Conference on Web Engineering, pages 303–318. Springer,
2023.

[28] SM Sohan, Craig Anslow, and Frank Maurer. A case study of web api evolution. In 2015
IEEE World Congress on Services, pages 245–252. IEEE, 2015.

[29] Aimilios Tzavaras, Nikolaos Mainas, Fotios Bouraimis, and Euripides GM Petrakis.
Openapi thing descriptions for the web of things. In 2021 IEEE 33rd International
Conference on Tools with Artificial Intelligence (ICTAI), pages 1384–1391. IEEE, 2021.

[30] Aimilios Tzavaras, Nikolaos Mainas, and Euripides GM Petrakis. Openapi framework
for the web of things. Internet of Things, 21:100675, 2023.

[31] Jinqiu Yang, Erik Wittern, Annie TT Ying, Julian Dolby, and Lin Tan. Towards extracting
web api specifications from documentation. In Proceedings of the 15th International
Conference on Mining Software Repositories (MSR), pages 454–464, 2018.

[32] Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and
Yang Liu. Has my release disobeyed semantic versioning? static detection based on
semantic differencing. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, pages 1–12, 2022.

[33] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Uwe Zdun, and Cesare Pautasso.
Patterns for API Design - Simplifying Integration with Loosely Coupled Message
Exchanges. Addison-Wesley, 2022.

	Introduction
	Background
	Version Identifiers in Web APIs
	OpenAPI Versioning Metadata
	API stable releases
	API Preview Releases

	Methodology
	Dataset preparation
	Analysis methodology

	Results
	Metadata-based versioning
	URL-based versioning
	Path-based versioning
	DNS-based versioning
	Header-based versioning
	Dynamic versioning
	``Two in production" Evolution Pattern
	Version Formats adoption over the years

	Results Summary
	Web API versioning in OpenAPI 4.0: proposal
	Related Work
	Conclusion

