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Abstract. More and more Web APIs use semantic versioning to repre-
sent the impact of changes on clients depending on previous versions. Our
goal is to provide insights about the extent to which evolving Web APIs
align with semantic versioning rules. In this paper we present the re-
sults of an empirical study on the descriptions of 3 075 Web APIs, which
released at least one new version throughout their history. The APIs
descriptions were mined by retrieving 132 909 commits from 2 028 dif-
ferent open source GitHub repositories. We systematically collected and
examined 506 273 changes of 195 different types released within 16 053
new API versions. We classified whether each change is likely to break
clients or not, and checked whether the corresponding version identifier
has been updated following semantic versioning rules. The results in-
dicate that in the best case, only 517 APIs consistently release major
upgrades when introducing breaking changes, while 1 970 APIs will not
always correctly inform their clients about breaking changes released as
part of minor or patch-level upgrades. We also detected 927 APIs which
use a backwards-compatible evolution strategy, as they never introduce
any breaking change throughout their history.

Keywords: Web APIs, Semantic Versioning, API Evolution, Breaking
Changes, OpenAPI

1 Introduction

In the rapidly evolving landscape of software development, Application Program-
ming Interfaces (APIs) stand as critical components [6], facilitating seamless in-
teractions between different software systems and services [23,15]. The manage-
ment of API evolution through versioning makes it possible to check, ensure or
break compatibility and determine how changes will affect API clients [10,8,12].
Semantic Versioning (SemVer) has emerged as a widely adopted set of rules
aimed at clarifying how to mint version identifiers to describe the impact of
changes on clients depending on previous versions of an API [2]. The adoption
and compliance with Semantic Versioning has been empirically studied [4] within
repositories of software packages and libraries for different programming lan-
guages (e.g., Maven [17,13], npm [16], golang [9]). Despite its prevalence within
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Web API descriptions [19], there is a lack of empirical studies on the adherence
to and the correct usage of semantic versioning [1] in real-world Web APIs.

In this paper, we aim at bridging this gap by presenting a method to as-
sess the consistency between changes applied to OpenAPI descriptions and the
corresponding version identifier which leads to answering the following:

RQ1) How often APIs introduce breaking vs. non-breaking changes?
RQ2) Are there many Web APIs which consistently follow semantic version-

ing rules across their entire history?
Given the public nature of Web APIs, the expectation is that their developers

carefully assess the impact of every change as they strive to avoid breaking their
clients. But if breaking changes are introduced, are semantic versioning rules
properly followed? How often can clients rely on semantic versioning identifiers
to set their expectations about the impact of new releases they depend on?

In this paper we present a data analysis method to statically classify 195
different types of changes that can be detected by comparing OpenAPI [14]
descriptions and predict whether they are likely to break clients with different
tolerance levels [3]. We apply the method to a collection of 3 075 API evolution
histories mined from open source GitHub repositories. The main findings are
that, in the best case, 1) almost one third of APIs in our sample (927) evolves
in a backwards compatible way; 2) a minority of APIs (517) which introduce
breaking changes does so by consistently adhering to semantic versioning rules.

The rest of this paper is outlined as follows: In Section 2, we highlight the
principal studies related to our work. Section 3 details the dataset of OpenAPI
specifications analyzed in this study. In Section 4, we introduce the key defini-
tions utilized throughout the paper. The methodology adopted for our analysis,
along with the metrics calculated, are elaborated in Section 5, with the findings
presented in Section 6. Discussions on the implications and the validity threats
of these results are found in Section 7. Finally, Section 8 concludes the paper,
outlining our conclusions and directions for future research.

2 Related Work

The consistent adoption of semantic versioning has been studied empirically
for software packages released in programming languages like Maven [17,13],
npm [16], golang [9]. Analyzing a large dataset from GitHub comprising 124k
third-party golang libraries and 532k client programs, the authors of [9] found
that 86% of the golang libraries follow semantic versioning but 28.6% of non-
major releases introduced breaking changes.

In [17], the authors scrutinize semantic versioning compliance in the Maven
repository, analyzing over 10 000 .jar files from 22 000 libraries. It uncovers that
33% of releases breach semantic versioning by introducing breaking changes,
which deviates from the expected practice of only making breaking changes in
major releases. In a more recent replication study [13], the authors analyzed
119 879 Java library upgrades and 293 817 clients revealing that 83.4% of up-
grades adhere to semantic versioning.
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As public Web APIs are meant to be offered to an unknown set of clients [23]
– unlike the previous studies – we do not consider client-side artifacts or usage
logs to estimate the impact of changes. Our static analysis therefore produces a
conservative assessment on the impact of the detected API changes on clients.

In our previous research on Web API versioning practices [19], we analyzed
7 114 APIs from GitHub, revealing 55 different version formats. We found that
85% of these APIs consistently adopt identifiers syntactically consistent with
semantic versioning. In further work [18], we proposed “API Version Clock” a
visualization of the evolution of an API over time, emphasizing the relationship
between changes of version identifiers and the nature of the changes made (e.g.,
breaking or non-breaking changes). It employs a sunburst plot to provide a fine-
grained, chronological view of API changes, color-coded to distinguish between
major, minor, and patch releases. Observing a small gallery of API evolution
histories reveals widely different approaches to versioning decisions in response
to changes. Building on these preliminary results, in this paper our objective is
to systematically and quantitatively assess the consistency between the changes
made in Web APIs and whether the corresponding version identifiers have been
updated following the actual semantics of semantic versioning [1].

3 Dataset

The OpenAPI Specifications (OAS [14]) analyzed in this study were gathered
through the GitHub API [20]. Before filtering, this dataset included 915 885
valid specifications from 270 578 APIs committed to GitHub between 2015 and
January 2024. As described in Table 1, our analysis focuses on the evolutionary
aspect of APIs. Therefore, we specifically looked at APIs with a history of at
least 10 commits, all containing valid OAS documents. Considering the goal of
this study, to examine the practical adoption of semantic versioning, we filtered
for APIs that consistently use identifiers compatible with semantic versioning
throughout their entire history. Additionally, to be able to check the level of
compliance with semantic versioning rules, we identified APIs that have released
at least one new version during their history that included some modifications
impacting the functionalities of the API. As a result, our study includes the
history of 3 075 APIs, with a total of 15 856 versions, corresponding to 506 273
changes introduced in their documentation.

Table 1: Data cleaning steps

Filtering Step # APIs # Commits

all valid commits 270 578 915 885
at least 10 valid commits 16 401 490 526
always use semantic versioning identifiers 14 489 413 463
have at least one version change 3 075 132 909
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4 Definitions

4.1 Semantic Versioning Change Classification

Due to the lack of widely accepted semantics for arbitrary version identifiers,
in this paper we focus exclusively on APIs which make consistent use of se-
mantic versioning throughout their evolution history, in both stable and pre-
view releases. More precisely, we analyzed API descriptions versioned with four
different schemes: X (Major), X.Y (Major.Minor), X.Y.Z (Major.Minor.Patch),
and X.Y.Z-LABEL (Major.Minor.Patch-Release Type). Where the release type,
if present, labels the maturity of the artifact along the API release lifecycle. The
version identifiers have been matched with the following regular expression:

/^(?i)(v)?\d{1,3}(?:\.\d{1,3})?(?:\.\d{1,3})?(?:-LABEL ))?$/
Where LABEL can be: alpha, beta, dev, snapshot, rc, preview, test, private.

We limit the size of the numbers to three digits because we want to avoid
catching identifiers using dates [5], which are often used in versioning but do
not provide a clear, incremental progression of versions, reflecting the expected
change impact between releases.

Based on the previous regular expression, the parsing operation p transforms
a version string into a structured tuple (X,Y, Z, Label). E.g,: p(v1) → (1,0,0,Ø)
and p(v3.0.1-alpha) → (3,0,1,alpha).

To detect the type of semantic version change, we use a classification function
c defined as follows. The function reads the tuples V1 = (X1, Y1, Z1, Label1) and
V2 = (X2, Y2, Z2, Label2) representing two distinct version identifiers. It detects
the following version changes:
Major (X.y.z): Incremented for incompatible API changes, signaling significant
modifications that may require client adjustments.

if X1 ̸= X2, then:

{
Major Upgrade, if X1 < X2

Major Downgrade, if X1 > X2

Minor (x.Y.z): Incremented for adding backward-compatible features, indicat-
ing enhancements without breaking existing functionalities.

if X1 = X2 and Y1 ̸= Y2, then:

{
Minor Upgrade, if Y1 < Y2

Minor Downgrade, if Y1 > Y2

Patch (x.y.Z): Incremented for backward-compatible bug fixes, often associ-
ated with routine maintenance updates.

if X1 = X2 and Y1 = Y2 and Z1 ̸= Z2, then:

{
Patch Upgrade, if Z1 < Z2

Patch Downgrade, if Z1 > Z2

Label change (x.y.z-LABEL): Updated to reflect the current (e.g., alpha,
beta, rc) pre-release stage, indicating the API is not yet ready for production.

if X1 = X2 and Y1 = Y2 and Z1 = Z2, then:

{
Label Change, if Label1 ̸= Label2

No Change, if Label1 = Label2
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4.2 API Changes Classification

Each change that occurs affects different elements of a Web API, such as its
endpoints, paths, operations, their request/response body, headers, parameters,
media types and schemas. The impact of each change depends on how these
elements are modified, added, or removed, and whether these changes maintain
backward compatibility with existing client implementations.

For example, within the paths, non-breaking changes include the addition
of new paths, whereas breaking changes encompass the removal of paths, with
further distinctions based on sunset operations and deprecation notices. Changes
on operations follow a similar pattern, with the addition of operations being non-
breaking, and their removal, especially without sunset dates or before the sunset
date, being breaking.

In this paper, we focus on analyzing API changes through specification com-
mit diffs, excluding from them OpenAPI specific modifications that do not im-
pact the API structure, its data model, and security components. We have iden-
tified a total of 195 distinct types of changes (See Tables 3 and 4 for some
examples). These changes are categorized into three main types: 96 Breaking
Changes, 66 Non-Breaking Changes, and 33 Undecidable Changes.

Breaking Changes (BC) can disrupt existing client implementations and re-
quire clients to adapt to these changes. These changes include modifying existing
properties or types (like changing types to enums), adding properties, request
parameters or required elements, deleting paths or properties from response pay-
loads, and changing nullable or optional attributes.

Non-Breaking Changes (NBC) do not require existing clients to change their
implementations. These are generally additive changes such as adding new prop-
erties to response payloads, tags, or media types, and changing types where
backward compatibility is maintained (like integer to number).

Undecidable Changes (UC) refer to those modifications whose impact on the
client varies depending on the client’s or backend’s tolerance level to dealing with
unexpected message payloads [3]. For example, when removing authentication
or authorization headers, old clients may not break if the security tokens they
still send to a tolerant API are ignored. Likewise, properties that are added to
API responses may break strict clients which reject unknown data elements. Un-
decidable changes, cannot be statically classified into breaking or non-breaking
without making further assumptions about the client and the API tolerance level.
Given that approx. one third of the changes are undecidable, we take them into
account with the following two scenarios:

– Best Case Scenario: We assume that all changes classified as undecidable
are treated as non-breaking. This perspective allows us to envision a scenario
where the potential for disruption due to those changes is minimized.

– Worst Case Scenario: Conversely, the worst-case analysis adopts a more
conservative approach by assuming that all undecidable changes have a breaking
impact. This stance takes into account a scenario where the ambiguity surround-
ing those changes is resolved by erring on the side of caution, thereby assuming
the maximum possible disruption and compatibility issues.



6 Serbout and Pautasso

Fetch API commits
from GitHub

Filter Data
(Table 1)

Extract Version
Identifiers

Classify
Version Changes

(Table 2)

Compare
API Versions

Classify
API Changes

(Tables 3, 4, 5)

Assess Consistency
(Figs. 2, 3, 4)

(Table 7)

Fig. 1: Data Analytics Pipeline

5 Methodology and Metrics

We implemented a systematic approach to assess consistency between changes
detected across API releases (Section 4.2) and the corresponding types of se-
mantic version identifier changes (Section 4.1). The results of the analysis have
been obtained by running a pipeline with the following steps (Figure 1).

For each API, we retrieve the complete commits history from its respective
GitHub repository. We then ensure that the API meets the filtering criteria as de-
tailed in Table 1. Following, we meticulously sift through the commits to isolate
the ones where a version identifier change has happened. The detected version
change is then classified to distinguish whether developers have made a Major,
Minor, Patch-level release or simply changed the release type label. Following
this, we extract the differences between the two consecutive versions of the API,
we compare their respective specifications using the oasdiff library [11]. The
extracted changes are then abstracted by matching them against the known
list of 195 change types, which have been pre-classified into the Breaking, Non-
Breaking, and Undecidable categories.

The outcome of the pipeline is a table listing, for all APIs and all their re-
leases, the API version change classification with the corresponding API changes.
To give a quantitative assessment of the consistency between the two according
to semantic versioning rules we compute the following metrics:

– Number of version changes (#VC), further subdivided into the number of
Major, Minor, Patch and Label changes (#Major, #Minor, #Patch, #LC)

– Number of API changes (#C), comprising the number of breaking changes
(#BC), non-breaking Changes (#NBC), undecidable changes (#UC).

– Proportion of Breaking Changes (BC%):

BC% =
#BC

#C
(Best Case) BC% =

#BC +#UC

#C
(Worst Case)

We assess adherence to semantic versioning by examining if version updates
involving at least one breaking change (#BC > 0) or, in the worst-case scenario,
at least one undecidable change (#UC > 0), have been accurately categorized
as Major. For each API, we define its compliance ratio as CR = #V

#V C where #V
is the number of versions which comply with semantic versioning, according to
the following rules:

#BC > 0 =⇒ Major upgrade (Best Case)
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#BC > 0 ∨#UC > 0 =⇒ Major upgrade (Worst Case)

This definition permits developers to produce Major releases without intro-
ducing breaking changes, as the incompatibility indicated by the version identi-
fier may be due to changes that do not visibly affect the API interface itself.

6 Results

We present the results of the analysis at two levels of granularity. First we
quantitatively study each API release independently by characterizing its type
of version identifier change and the types of changes introduced in the API itself,
by classifying whether they are expected to break or not break clients. This
allows us to determine whether the release complies with semantic versioning.
Then we proceed to aggregate each release along the history of the corresponding
API. This will make it possible to classify the APIs in the dataset according to
various facets: which type of changes they underwent at some release in their
history, which type of version identifier change, as well as to which extent the
API consistently adhered to semantic versioning throughout its entire history.
The raw results are publicly shared in a replication package in GitHub.

6.1 Change-level compliance

Types of version changes. While the most frequently occurring type of
version change (Table 2) is the “Patch Upgrade”, “Minor Upgrades” can be
found more widely across more than half the APIs in the dataset. Overall, the
14 204 Upgrades outnumber the 1 131 Downgrades. As expected, major releases
are the least frequent (both concerning upgrades and downgrades). Among the
3 075 APIs, 2 198 APIs have combined at least two types of version changes
during their change history. 764 have only one version change. 133 APIs have
more than one version change, but they are all of the same type.
Types of API changes In Table 3 we list the most recurrent breaking changes
(out of 96). The analysis of breaking change within our dataset prominently high-
lights “Response property type changed” as the most frequently occurring type
of change, followed by the removal of values from enumerated type definitions.
The most widespread change affecting 1211 APIs at least once is the removal of
paths. Path removal is the complementary change to Path addition, the most
prevalent non-breaking change both according to the number of occurrences but
also the number (48.14%) of impacted APIs (Table 4).

There is no clear correlation between the presence of specific API changes
(e.g., the addition or removal of paths) and the corresponding version identifier
changes (listed in the last four columns in the Tables 3 and 4). For example, the
removal of paths without deprecation is detected in 246 major releases, which
correctly represent the impact of such major change. However, also 629 minor
and even 557 patch-level upgrades do include at least one path removal, a clear
violation of semantic versioning rules.

https://github.com/souhailaS/WebAPI-Change-vs-Versioning
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Table 2: Classification of version changes (VC) indicating their occurrence
(#VC), the total number of breaking, non-breaking and undecidable changes
detected in conjunction with each type of version change, as well as their preva-
lence within all APIs and within how many APIs with breaking changes

#VC #UC #BC #NBC #APIs w/BC
Total Best Worst

Patch Upgrade 7 108 67 032 63 541 77 490 1 669 1 198 1 498
Minor Upgrade 6 038 87 471 54 443 70 820 1 774 1 240 1 412
Major Upgrade 1 058 7 866 11 920 14 854 808 375 422
Label Change 718 3 085 7 938 6 513 345 85 96
Minor Downgrade 459 2 252 4 508 5 160 265 210 233
Patch Downgrade 434 3 056 6 102 3 519 249 210 231
Major Downgrade 238 2 266 2 877 3 560 163 132 150

Total 16 053 173 028 151 329 181 916 3 075 2 148 2 487

Table 3: Most frequent breaking changes

Breaking Change Occ. #APIs #VC #Major #Minor #Patch #LC

Response Property Type Changed 23 048 714 872 100 335 406 31
Response Property Enum Value Removed 21 210 319 377 43 182 136 16
Path Removed Without Deprecation 15 877 1 211 1 463 246 629 557 31
Response Required Property Removed 12 587 409 547 68 244 205 30
Request Property Enum Value Removed 9 438 223 252 25 114 107 6
Path Parameter Removed 7 019 678 819 118 330 330 41
Response Media Type Removed 5 744 154 168 27 54 77 10
Response Property Pattern Changed 5 032 96 100 6 34 59 1
Response Property Became Optional 4 341 286 333 41 139 135 18
Response Property All Of Removed 4 261 185 240 27 119 87 7
Response Body Type Changed 3 906 351 380 37 170 163 10
Request Property Type Changed 3 872 448 502 40 188 259 15
Response Property Min Length Decreased 3 758 69 73 1 18 51 3
Request Required Property Added 2 524 339 394 62 169 154 9

Table 4: Most frequent non-breaking changes
Non-Breaking Change Occ. #APIs #VC #Major #Minor #Patch #LC

Path Added 37 928 2 182 2 881 405 1 201 985 290
Response Optional Property Removed 34 172 826 1 011 117 458 413 23
Request Optional Property Added 19 814 1 019 1 259 105 482 627 45
Response Property Became Required 18 112 507 647 80 280 259 28
Request Property Enum Value Added 15 853 324 399 35 178 174 12
Request Optional Parameter Added 12 794 1 343 1 737 447 775 490 25
Response Media Type Added 10 604 334 360 51 148 149 12
Response Non Success Status Added 8 452 704 790 96 362 317 15
Response Optional Header Removed 2 332 73 79 14 52 11 2
Response Property Pattern Added 2 316 81 88 14 31 41 2
Request Parameter Enum Value Added 2 063 148 171 17 77 74 3
Request Parameter Became Optional 1 523 161 165 14 86 65 0
Request Property Became Nullable 1 493 111 135 8 76 39 12
Request Property Became Optional 1 433 257 293 36 131 112 14
Request Optional Default Parameter Added 1 122 69 75 7 29 38 1
Response Success Status Added 1 052 315 336 53 129 151 3
Response Required Property Became Not Read-Only 925 15 21 0 9 8 4
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Table 5: All the non-breaking changes that were associated with a Major version
change during which no breaking changes occurred

Non-Breaking Change Occurrences #APIs #VC(=#Major)

Request Optional Parameter Added 917 333 334
Path Added 763 118 141
Response Non Success Status Added 214 20 21
Response Optional Property Removed 10 5 5
Response Success Status Added 6 3 4
Request Parameter Became Optional 6 3 3
Request Optional Default Parameter Added To Existing Path 5 1 1
Response Media Type Added 3 3 3
Request Optional Property Added 2 1 1
Request Property Became Optional 2 1 1
Request Property Enum Value Added 2 1 1
Request Parameter Enum Value Added 1 1 1

Version Changes classification by API Change Type. How many major
releases contain at least some breaking changes? According to the aggregated
results in Table 2 – listing the total number of breaking, non-breaking and unde-
cidable changes for each type of version change – there are 1 058 major upgrades
with 7 866 breaking changes in total. While according to semantic versioning,
there should be no breaking changes for patch and minor upgrades, we can read
that the highest number of breaking changes (87 471) is actually detected in
conjunction with minor upgrades. Notably, label changes, despite their lower
frequency, also account for a significant number of breaking changes, indicating
that clients can and will be broken as an API alpha release is updated to beta.

The total number of breaking changes listed in Table 2 is further decomposed
in Table 6 with some statistics. It stands out that the worst major release intro-
duced 723 breaking changes. This is a small number, however, if compared to
the 2 508 breaking changes applied to one minor release. We also spot that the
minimum number of breaking changes is 0 across all version change types. This
means that there at least some minor releases without breaking changes. How
many? Only 32% of the minor releases and 27% of the Patch releases do include
exclusively non-breaking changes as we can see from Fig 2, showing a complete,
detailed map of the major, minor and patch version changes classified according
to the corresponding mix of API change types. For example, we can see that
while 705 major releases of 375 APIs contain at least one breaking change, 75
releases contain only breaking changes. In the worst case, 813 major releases of
422 APIs contain both at least one breaking and one undecidable change. There,
we also observe that 37% of major releases include only non-breaking changes,
all of which are listed in Table 5.

Non breaking changes in Major releases. While it is not a violation of
semantic versioning to launch a major release that is fully backwards compatible,
we observed that there is only a limited number of 12 non-breaking changes when
this happens (Table 5). Predominantly, the most frequent changes pertained to
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Table 6: Number of breaking changes detected for each type of version change

#BC (Best) Max Min Average Median StdDev

#BC+#UC (Worst) Worst Best Worst Best Worst Best Worst Best Worst Best

Major Upgrade 723 509 0 0 18.70 11.27 1 0 64.97 42.77
Minor Upgrade 2 508 2 508 0 0 23.50 9.02 2 0 101.37 57.34
Patch Upgrade 2 308 1 692 0 0 18.37 8.94 2 0 94.25 57.29
Major Downgrade 553 518 0 0 21.61 12.09 5 3 50.60 39.11
Minor Downgrade 362 246 0 0 14.73 9.82 4 3 32.27 20.14
Patch Downgrade 559 349 0 0 21.10 14.06 4 3 58.60 43.12
Label Change 2 637 2 596 0 0 15.35 11.06 0 0 110.29 105.17

NBC BC

UC

1107 85%

483
37%

705 54%

75
6%

261
21%

72
5%

78
6%

36
3%

477 36%

291
22%

Major (1296)

NBC BC

UC

5536 85%

2062
32%

3232 50%

347
5%

1205
18%

838
13%

247
4%

369
6%

2885 44%

1431
22%

Minor (6497)

NBC BC

UC

6116 81%

2052
27%

3878 51%

758
10%

1349
18%

1201
16%

257
3%

410
6%

3382 45%

1514
20%

Patch (7542)

Fig. 2: Classification of the Major, Minor and Patch-level releases according to
their mix of breaking (BC), non-breaking (NBC), and undecidable (UC) changes.
The values outside the circles refer to the number of version changes with at least
one type of API change

modifications in the API structure, such as the inclusion of new paths or the
addition of optional request parameters.
Version Change vs. Breaking Change Proportion. While in 594 major,
2 778 minor, and 3 220 patch releases do include changes of exactly one type,
54% of major releases (57% of minor and also 57% of patch) do include a mix of
changes. It is thus worth to investigate how the proportion of breaking changes
(BC%) relative to all changes influences the decision for a version upgrade. Fig-
ure 3 illustrates the BC% distribution both for the best and worst cases, with
the APIs segmented according to the type of version change involved (Major,
Minor, Patch, Label Change) as well as whether the version was upgraded (top)
or downgraded (bottom). The ’Normalized Frequency’ plots within the main
histograms provide a relative comparison, allowing for the visual assessment of
the impact of the proportion of breaking changes on the decision to launch a
major or minor release irrespective of the absolute number of version changes.

In both the best and worst-case scenarios, the histograms show that most
version changes have a null proportion of breaking changes, as evidenced by
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Fig. 3: Breaking changes proportion distributions for Upgrades (above) and
Downgrades (below), categorized by each type of version change

the high bars at the left side of the histograms (BC% = 0%). This observation
is consistent with the fact that 54.68% of the APIs exclusively undergo non-
breaking changes, thus maintaining backward compatibility. The presence of
bars across all intervals indicates that breaking changes are spread across the
entire spectrum, becoming more and more prevalent, up to thousands of releases
which include only breaking changes. The normalized plots reveal that, regardless
of whether updates are classified as upgrades or downgrades, the proportion of
breaking changes does not significantly affect the assignment of a new version
number to the API. This trend persists even in cases where breaking changes
constitute 100% of the alterations, indicating scenarios where all the changes
were breaking and developers still assigned a non-major version to the release.
In the worst-case scenario, we identified that there were 66 distinct types of
breaking changes that were applied in the absence of any non-breaking ones.
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Fig. 4: Compliance Ratio Distribution

6.2 API-level Compliance

APIs that adhere to semantic versioning are those that have consistently main-
tained backward compatibility or have appropriately notified clients of any com-
patibility breaks through version identifiers. Within our dataset, under the best
case scenario, we identified a total of 962 adhering APIs (out of 3075 that ex-
perienced at least one instance of breaking changes (BC), non-breaking changes
(NBC), or undecidable changes (UC)). In the worst-case scenario, this number
decreases to 588 APIs. When examining the subset of 2487 APIs that introduced
breaking changes, we found that 517 APIs in the best case and only 180 in the
worst case have adhered to semantic versioning principles (Table 7). These APIs
have the highest average number of major releases. The highest average num-
ber of releases (#VC) overall, however, is found within the non-compliant APIs.
These also underwent a significantly larger number of changes (484 221) than
the APIs which adhere to semantic versioning (31 244).

Figure 4 provides a nuanced view of the compliance ratio for both best and
worst-case scenarios also distinguishing upgrades from downgrades. It illustrates
that only some APIs do consistently adhere to (1 444 in the best case, 768 in the
worst) or always deviate (532 in the best case, 766 in the worst) from compliance
across all releases. Instead, there is a non-empty subset of 1541 APIs with par-
tial compliance in the worst case. The central peak with 50% compliance ratio
accounts for the 582 APIs with two releases, out of which only one is compliant.
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Table 7: Metrics comparison for APIs classified according to their compliance

Adhering to Semantic Versioning Not Adhering
BC%= 0 BC%> 0 BC%> 0 Total

Metric Best Worst Best Worst Best Worst

#APIs 927 588 517 180 1 970 2 307 3 075
#VC 2 190 1 089 1 527 413 14 423 15 537 16 053

Avg #VC 2.36 1.85 2.95 2.29 7.32 6.73 5.22
Avg #Major 0.17 0.32 0.24 0.86 0.04 0.04 0.08
Avg #Minor 0.27 0.32 0.20 0.10 0.45 0.44 0.42
Avg #Patch 0.33 0.26 0.29 0.04 0.49 0.48 0.46

#BC 0 0 2 723 2 665 148 606 148 664 151 329
#NBC 8 226 4 558 7 584 3 896 169 774 173 462 181 916
#UC 5 523 0 7 188 1 440 165 840 171 588 173 028

Avg BC% (Best) 0.00 0.00 8.81 31.46 24.75 23.00 11.19
Avg BC% (Worst) 12.73 0.00 30.20 42.37 46.38 44.90 29.77

7 Discussion

How often APIs introduce breaking vs. non-breaking changes?

The analysis of histories of 3,075 APIs that experienced changes affect-
ing their functionalities, revealed that 80.87%, included backward incompatible
changes. This finding reveals the considerable challenge developers face in main-
taining backward compatibility. The prevalence of such changes underlines the
critical need for effective versioning strategies and comprehensive documenta-
tion to mitigate potential disruptions and ensure a smoother transition for API
consumers.

Are there many Web APIs which consistently follow semantic versioning rules
across their entire history?

Contrary to theoretical expectations, the study uncovered that only 577 APIs
with breaking or potentially breaking changes adequately reflected these alter-
ations by launching a major release, adhering to semantic versioning princi-
ples in practice. Moreover, despite SemVer guidelines suggesting that minor ver-
sions should only introduce backward-compatible features, 2 282 APIs did release
breaking changes as minor or even patch-level updates. This deviation could be
due to a misinterpretation of what constitutes a breaking change or a desire to
push new features quickly without incrementing the major version.

We also found 910 APIs where Major version updates did not introduce
any breaking changes. Interestingly, these non-breaking changes (NBC) were
categorized into exactly 12 distinct types. This observation suggests a nuanced
approach to versioning, where developers might choose to launch major releases
for reasons other than breaking changes, such as significant feature additions or
improvements meant to attract new clients without breaking existing ones.
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7.1 Threats to validity

Construct Validity. Not all changes may be documented or detected, espe-
cially if they are subtle or indirect, possibly underestimating the true impact
of API changes [21]. We rely on a single tool (oasdiff) to detect the changes,
which may bias the results. The classification of the changes into breaking, non-
breaking, and undecidable was manually performed by the authors.
External Validity. A potential threat to the generalizability of the findings
arises from the focus on Web APIs specifications hosted on GitHub, raising
questions about the applicability of our findings to proprietary or non-GitHub
hosted API documentation.
Internal Validity. Establishing a clear causal relationship between the pres-
ence of specific types of API changes and the corresponding type of version
identifier change remains an open challenge. The decision on which type of ma-
jor, minor or patch-level release may be influenced by other confounding factors.
As most APIs have a only a few releases in their histories, this may produce
discretization artifacts in the distributions shown in Figures 3 and 4.

8 Conclusion

The results of the study presented in this paper underscore a critical need for
tools and guidelines tailored specifically for correctly applying semantic version-
ing to Web APIs. With an empirical analysis tracking the evolution histories of
3 075 Web APIs, we found that in the worst case (assuming clients and backends
perform strict checking of message payloads) only 768 (25%) APIs consistently
comply with Semantic Versioning by always releasing major upgrades for break-
ing changes (180), or never breaking their backward compatibility (588). This
number grows to 1444 APIs (46%) when assuming clients and backends follow
the “tolerant reader” pattern [3].

This finding highlights a discrepancy between the theory [1] and the state
of the practice of semantic versioning within the Web APIs described using
OpenAPI specifications, tracked using GitHub open source repositories. Based
on these results, there is a need for establishing standardized versioning protocols
which can be embedded into semantic versioning calculators [7,22] to mitigate the
observed inconsistencies, benefiting both Web API developers and consumers by
enhancing predictability, reducing potential disruptions, simplifying dependency
management, and fostering a more resilient Web API ecosystem.
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