
To deprecate or to simply drop operations?
An empirical study on the evolution of a large

OpenAPI collection

Fabio Di Lauro ID , Souhaila Serbout ID , Cesare Pautasso ID

fabio.di.lauro@usi.ch,souhaila.serbout@usi.ch,c.pautasso@ieee.org

Software Institute, USI, Lugano, Switzerland

Abstract

OpenAPI is a language-agnostic standard used to describe Web APIs which
supports the explicit deprecation of interface features. To assess how RESTFul
APIs evolve over time and observe how their developers handle the introduction
of breaking changes, we performed an empirical study on a dataset composed
of 1,192,664 API operations with histories distributed across 407,028 commits
belonging to 149,704 distinct APIs. The APIs were selected out of a set of 271,111
APIs mined from GitHub, which are described in 780,078 OpenAPI description
artifacts.

Our results focus on detecting breaking changes engendered by operations
removal and whether and to which extent deprecation is used to warn clients
and developers about dependencies they should no longer rely on. We found that
only 5.2% of the explicit-deprecated operations and 8.0% of the deprecated-in-
description operations end with a removal. We conclude that developers tend
to avoid the operations removal after their deprecation, and even when they
remove them, the tendency is do it in the first two years after the deprecation.
While there is a low negative correlation between the presence of deprecated
operations and the APIs age, we found also a weak negative correlation between
the total amount of the defined operations and the ratio between the number of
explicit-deprecated and the total amount of operations. This finding indicates
the presence of more explicit-deprecated operations in smaller APIs, rather than
in bigger ones.

1 Introduction

Web APIs evolve in different ways (e.g. introduce/alter/refactor/remove end-
points) and for a multitude of reasons [6, 7, 16] (e.g., to adapt them to emerging
client or provider needs). The extension of an API by adding new features is
usually a safe operation, which does not affect existing clients. Conversely, when
API maintainers want to remove or alter existing functionalities [4, 17, 18], and
consequently introduce breaking changes, they should guarantee the stability of
their offerings [9] for example announcing those modifications in order to let

https://orcid.org/0000-0001-6982-9851
https://orcid.org/0000-0002-8144-2606
https://orcid.org/0000-0002-2748-9665


2 Fabio Di Lauro et al.

clients be aware of possible abnormal behaviours of their applications, in case
they will not update them [3, 8].

The goal of this study is to determine whether and to which extent API main-
tainers make use of deprecation [10, 15] to announce future potentially breaking
changes. To do so, we analyze Web APIs described using OpenAPI [12], because
of its growing industry adoption [5] and its support for explicit deprecation
metadata.

In particular, we aim to answer the following research questions:
Q1: How do API operations evolve over time? How stable are they?
Q2: How often an operation is declared deprecated before its removal?
Q3: Does the amount of deprecated operations always increase over the API

commit histories?
Q4: How does the amount of deprecated operations depend on the API size?
Q5: Do developers tend to remove or to keep deprecated operations? How

much time is needed for their eventual removal?
To answer these questions we collected a large number of distinct OpenAPI

models (149,704) and all of their change history from GitHub to analyse the
changes that occur on the level of the API operations over time. Our goal is
to assess how often developers introduce breaking changes in practice and how
often they use deprecation to announce them before actually starting to remove
operations. This study is possible because from version 3.0 of OpenAPI a dep-
recation annotation was introduced so that API maintainers can inform client
developers about future changes that might cause their clients’ malfunction.
However, in earlier OpenAPI versions this annotation could only be represented
using natural language text in the operations descriptions.

Overall, we found a high stability of operations over time and a small amount
of them effectively removed after their deprecation. The presence of deprecated
operations shows a low correlation with the API age and we detect a weak corre-
lation between the amount of deprecated operations and the API size, measured
as the total number of operations. Our measurements reveal a tendency not to
remove the operations after their deprecation. Their eventual removal, when it
happens, takes around 2 years (median).

The rest of this paper is structured as follows. Section 2 presents an overview
of the dataset used in this study. Section 3 shows our results and selected case
studies. In Section 5 we discuss the results. Section 6 summarizes related work.
We conclude our study and indicate possible future work in Section 7.

2 Dataset Overview

We mined GitHub from December 1st, 2020 to December 31th, 2021 looking
for YAML and JSON files, which comply with the OpenAPI [12] specifications,
in order to retrieve API descriptions artifacts. The mining activity produced a
total of 271,111 APIs with their histories contained in a total of 780,078 com-
mits. We built a tool, hereinafter called crawler, that mines those artifacts and
save associated metadata (commits timestamp, API title, versions and others),



To deprecate or to simply drop operations? 3

0 1 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

12
00

12
50

13
00

13
50

14
00

14
50

15
00

15
50

16
00

16
50

17
00

17
50

18
00

18
50

19
00

19
50

20
00

20
50

21
00

21
50

22
00

22
50

23
00

23
50

24
21

100

102

104

API Age (days)

N
um

be
r

of
C

om
m

its

100

102

104

106

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

its

Fig. 1. Distribution of the API age metric across all commits

0 100 200 300 400 500 600 700 800 900 1,000
0

365

730

1,095

1,460

1,825

2,190

API

D
ay

of
C

om
m

it

0 100
Deprecated/Total operations (%)

6170 Commits

Fig. 2. Overview of APIs, sorted by relative age, with at least 1 deprecated operation
and a minimum history of 2 commits

and validates their compliance with Swagger and OpenAPI standards using the
Prance [13] and open-api-spec-validator [11] tools, and finally parse them and
extract relevant information for this study. After the validation process, we ob-
tained a dataset of 166,763 valid APIs from which we removed 17,059 APIs with
duplicate histories. Subsequently, we removed APIs with no operations defined
in their histories, which are a total of 12,645 APIs. The resulting dataset is com-
posed by 137,059 unique and valid APIs, distributed across 333,936 commits. In
Fig. 1, we count the number of commits, for every API, and we show how they
distribute themselves across the APIs lifespan. 109,247 APIs (79.7% of the total
APIs) present only one commit (API Age=0) as show in the first bar of Fig. 1.

The resulting dataset contains 1,491 APIs which have more than one commit
and at least one commit including deprecated components. Fig. 2 presents an
overview of the dataset. Each dot corresponds to one commit. Its color indicates
the relative amount of deprecated operations. The commits are positioned on
the Y axis according to their timestamp relative to the first commit of the API



4 Fabio Di Lauro et al.

Operations

Parameters

Responses

5,504

0

26

56

0

0
0

(a) explicit-deprecated

Operations

Parameters

Responses

338

42

1

1

1

1
0

(b) deprecated-in-description

Fig. 3. Classification of APIs depending on how and where deprecated components
(operations, parameters, responses) have been detected

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

66
8

100

102

104

Operations

N
um

be
r

of
C

om
m

its Total operations Deprecated operations

Fig. 4. Distribution of Total and Deprecated Operations over all API Commits

history. All commits of the same API description are aligned vertically. The APIs
on the X axis are sorted according to their age, with the oldest ones found on
the right side. We can see that 740 APIs have a commit history of less than one
year, while a very small number reaches more than 5 years of age.

3 Results

3.1 Deprecation Detection

In this study we distinguish two types of deprecation: i) explicit-deprecation in-
troduced at operations, parameters and schema levels through the dedicated
deprecated field, defined from OpenAPI 3.0; ii) deprecation-in-description, de-
tected analyzing components - defined as the operations, parameters, responses



To deprecate or to simply drop operations? 5

0 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

101

102

103

104

Deprecated/Total operations (%)

N
um

be
r

of
C

om
m

its

103

104

C
um

ul
at

iv
e

N
um

be
r

of
C

om
m

its

Fig. 5. Distribution of φdep
c over all API Commits

and schema - descriptions fields. The latter heuristic is implemented searching
a list of keywords, formed by a list of the words which start with the prefix
deprecat-, in components description fields. Using the previous classification we
detected 5,586 APIs which contain explicit-deprecated components (Fig. 3.a) and
384 APIs which have deprecation-in-description components (Fig. 3.b). Fig. 4
shows how the API size (in terms of the Number of Operations metric) is dis-
tributed across all commits. The histograms also show a comparison, for each
API size bin, between the total number of operations and the deprecated ones;
as we can see the dataset contains relatively large artifacts (with hundreds of
operations). The number of deprecated operations found within them however
does not grow as much. We also measured that 95.8% of the 137,059 APIs con-
sidered don’t have any deprecated operations in their histories. To assess the
relative amount of deprecated operations we define the indicator:

φdep
c =

|Odep
c |

|Oc|
where: Odep

c ⊆ Oc (1)

Oc := { op | op is an operation detected in the commit c }
Odep

c := { dop | dop is a deprecated1 operation detected in the commit c }

In Fig. 5 we show a histogram and cumulative distribution function of the
φdep
c indicator with a logarithmic Y axis scale. Since this was plotted over the

commits with at least one deprecated operation, the 0 value bin counts how
many commits have 0 ≤ φdep

c < 1. Fig. 6 shows how the same indicator φdep
c )

changes depending on the commit age (relative to the first commit timestamp
of the API history). The dots color shows how many commits we found with
the same φdep

c at the same age. Considering all commits of all APIs together,
we can observe a very small negative correlation rage between the two variables.

1 From here onwards, we focus on operations that are explicit-deprecated or deprecated-
in-description, without further distinguishing how they have been detected.



6 Fabio Di Lauro et al.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0
10
20
30
40
50
60
70
80
90
100

Ŷ = −0.00719X + 13.65582, R2 = 0.02458

Days since the first commit

ϕ
d
e
p

c
(%

)
213

# commits

11927 commits

r = −0.156792123

Fig. 6. Deprecated operations ratio φdep
c vs. API relative age: Does the presence of

deprecated operations increase over time?

-1

-0
.9

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

100

101

102

Correlation Between ϕdep
c and APIs age

#
A

PI
s

101

102

C
um

ul
at

iv
e

#
A

PI
s

Fig. 7. Distribution of the Correlation ragei over 453 API histories

More in detail, we computed the same correlation ragei separately across each
API history i. In Fig. 7 we present the histogram showing the distribution of the
< φdep

c , age> correlation over 466 APIs for which it was possible to compute it.
We can observe that 33.7% of the 466 APIs analyzed have −0.1 ≤ ragei ≤ 0.1
while 53.9% of the APIs have a negative correlation −1 ≤ ragei ≤ −0.2.

In Fig. 8 we can observe the relationship between φdep
c and the API size across

all commits. The dots color shows how many commits we detect with the same
φdep
c and the same total number of operations |Oc|. The discretization effect on

the left side is due to the indicator being computed over small APIs with less
than 100 operations. Overall, the proportion of deprecated operations tends to
decrease when the number of operations increase. The overall correlation rops

value shows a weak negative global correlation between the two analyzed metrics.



To deprecate or to simply drop operations? 7

0 100 200 300 400 500 600 700
0
10
20
30
40
50
60
70
80
90
100

Ŷ = −0.13354X + 22.83074, R2 = 0.1761

# Operations

ϕ
d
e
p

c
(%

)
0 4860

# commits

11927 commits

r = −0.419645314

Fig. 8. Deprecated operations ratio φdep
c vs. API size: Does the presence of deprecated

operations grow within larger APIs?

-1

-0
.9

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1 0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

100

101

102

Correlation Between ϕdep
c and Total Operations

#
A

PI
s

102

C
um

ul
at

iv
e

#
A

PI
s

Fig. 9. Distribution of the Correlation ropsi over 257 API histories

As before, we also calculated the correlation separately ropsi for each API history
i. Fig. 9 shows the distribution of the correlations ropsi over all APIs. The vast
majority (86.5%) of the 325 APIs analyzed have −1 ≤ ropsi ≤ −0.8.

3.2 Operation state model

Based on tracking the changes ocurring to all API operations for each commit,
we inferred the state model shown in Fig. 10. Once created (c), an operation can
change its state to deprecated (d) or removed (r). Sometimes the APIs main-
tainers can choose to reintroduce a removed operation bringing it back to a c
(reintroduce transition) or d state (reintroduce deprecated transition). We define
the deprecate transition when a commit introduces an explicit-deprecation or
a deprecation-in-description for an operation. The opposite state change is rep-



8 Fabio Di Lauro et al.

c

d

r

keep created

deprecate

undeprecate

remove

remove

keep deprecated

reintroduce

reintroduce deprecated

keep removed

Fig. 10. Operations State Diagram

Table 1. Summary of Operations State Model (Number of Operations with Initial
States, Final States and Transitions)

initial 459,593 1,887 N/A

final transition created deprecated removed

391,292 created 3,787,534 758 74,120
2,136 deprecated 113 15,050 490
68,052 removed 14,515 80 624,567

resented by the undeprecate transition which occurs when an operation is not
marked anymore as deprecated. To simplify the analysis and reduce its cost, in
this section we focus at the operation level neglecting the parameters, responses
and schema levels. Every state has its own self-loop transition which represents
operations that remain in the same state between two consecutive commits. In
Table 1 we count the operations in each of their initial and final states as well
all the transitions between pairs of states. We measured also that 0.8% of APIs
include reintroduce and reintroduce deprecated transitions in their histories and
10.9% of the 70,457 operation removals are later reintroduced.

We observed that 94.8% of the explicit-deprecated operations and 92.0% of
the deprecated-in-description operations remain in the deprecated state (d). This
means that for most operations, they are not removed after being deprecated
and persist in further commits, until the last one. Excluding the transitions
which start and land in the same state, we counted a total of 559,673 operation
state transitions across all commits. Table 2 presents some statistics on their
duration. On average, operations get reintroduced much faster than what it
takes to remove them. Also, the longest transition from deprecated to removed
took 43.2 months. In some cases, few operations did repeatedly get removed but
also reintroduced (up to 50 times), as shown with the sub-sequences marked
with * in Table 3.



To deprecate or to simply drop operations? 9

Table 2. Statistics on the Time Between State Transitions

transition minimum average median maximum

created → removed 0 14.6 wks 9.5 d 67.5 mths
removed → created 0 2 mins 46.4 hrs 37.4 mths
created → deprecated 2 mins 41.9 wks 29.5 wks 50.1 mths
deprecated → created 2 mins 34.1 d 52.5 hrs 13.5 mths
deprecate → removed 0 66 d 9.8 d 43.2 mths
removed → deprecated 64 secs 15.3 d 51.4 hrs 20.6 wks

Table 3. Operations Following State Transition Sequences

Transition Sequence Number of Operations

created → removed 64,740
created → removed → created 4,968
created → removed → (created → removed)* 2,837
created → (removed → created)* 1,555
created → deprecated 636
created → deprecated → removed 60
created → deprecated → created 34

3.3 Deprecated Operation Stability

After the deprecation, an operation can be removed, kept or brought back to a
non-deprecated state. In Fig. 11 we show the distribution of the age of removed
and maintained operations after their deprecation, using bins of 100 days. In
Table 4 we reported the previous distributions, with the addition of operations
brought back to non-deprecated state, setting the bins size to one year. In addi-
tion, we computed the likelihood for a deprecated operation to be removed (pr),
kept (pk) or restored in a previous non-deprecated state (pu).

4 Case studies

Out of the API collection we have selected four examples of APIs in which we
can observe the evolution of their size over a period up to two years. They were
selected as representatives of different classes of evolution behaviors, including
cases in which both deprecation and operation removal occur. In Fig. 12 (left)
we show a timeline of the total number of operations (black) and the number
of deprecated operations (red) measured at every commit. The operation state
model inferred from each API history is shown on the right column. The numbers
on the edges indicate how many operations underwent the corresponding state
transitions. The first case study shows how the Kubermatic API has grown from
14 until more than 100 operations over 1.7 years. The growth is not monotonic,
as 77 operations have been permanently removed at various points in time. In
the second case study the NASA UTM API (known as “NUSS UAS Operator



10 Fabio Di Lauro et al.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400
0

100

200

300

Time elapsed in days (age)

N
um

be
r

of
de

pr
ec

at
ed

op
er

at
io

ns
Deprecated ops not removed Deprecated ops removed

Fig. 11. Age reached by removed and not removed deprecated operations

Table 4. Stability of Deprecated Operations

Time (years) Ops removed (pr) Ops not removed (pk) Ops un-deprecated (pu)

[ 0, 1 ) 96 (0.22) 319 (0.75) 13 (0.03)
[ 1, 2 ) 204 (0.21) 759 (0.77) 20 (0.02)
[ 2, 3 ) 53 (0.11) 406 (0.86) 11 (0.02)
[ 3, 4 ) 60 (0.13) 410 (0.85) 10 (0.02)
[ 4, 5 ) 18 (0.06) 299 (0.91) 10 (0.03)
[ 5, 6 ) 19 (0.17) 87 (0.76) 8 (0.07)
[ 6, 7 ) 0 (0.00) 40 (1.00) 0 (0.00)

API”) undergoes a significant redesign after 485 days, when 1/3 of its operations
are removed, and another third is deprecated and a few days later also removed.
A similar behavior can be observed in the third case study, where two of the
removed operations get reintroduced, one of which returns to the original non-
deprecated state. The last case study shows the Mysterium Network API (known
as “Tequila API”) which also presents a larger proportion of directly removed
operations. Also towards the end of its history 5 operations are deprecated and
a similar number gets introduced shortly afterwards, probably suggesting that
a replacement can be found.

5 Discussion

Q1: How operations evolve over time? How stable are they? 83.4% of
the initial transitions end in a created final state passing through only one create
transition. This result denotes a high stability of the analyzed operations. In this
study, we detect 2,114 operations (0.2%) which remain in a deprecated state, as
explicit-deprecated or deprecated-in-description, until the end of their history but
only 466 operations follow the deprecate-remove path, i.e. they conclude their
lifecycle with a deprecate transition followed by a remove.



To deprecate or to simply drop operations? 11

a)

0 100 200 300 400 500 600
0

50

100

Days since the first commit (Age)

#
O

pe
ra

tio
ns

a) angry-tony/kubermatic

c

d

r

116

4

0

78

0

4

1

0

77

121 commits
ragei = −0.7958
ropsi = −0.8346

b)

0 100 200 300 400 500 600
0

20

40

Days since the first commit (Age)

#
O

pe
ra

tio
ns

b) nasa/utm-apis

c

d

r

17

16

1

18

17

0

0

0

35

5 commits
ragei = 0.5130
ropsi = −1

c)

0 50 100 150 200 250 300
0

20

40

Days since the first commit (Age)

#
O

pe
ra

tio
ns

c) pbougue/tartare

c

d

r

22

12

1

13

13

0

1

1

25

18 commits
ragei = 0.3791
ropsi = −0.8197

d)

0 50 100 150 200 250 300 350 400
0

20

40

60

Days since the first commit (Age)

#
O

pe
ra

tio
ns

d) mysteriumnetwork/node

c

d

r

52

7

0

23

1

6

19

1

12

44 commits
ragei = 0.3824
ropsi = 0.8545

Fig. 12. API Evolution with Deprecated Operations – Case Studies



12 Fabio Di Lauro et al.

We also observe that 0.4% of the initial transitions lead directly to the
deprecated state, thus indicating that collection includes few artifact histories
that lack the initial created state. Furthermore, only 14.8% of the initial create
transitions end with a final removal of the involved operations passing through
the transitions sequence create → remove, i.e. with this sequence the developers
potentially introduce breaking changes, due to the absence of the intermediate
deprecate transition.

Q2: How often an operation is declared deprecated before
its removal? 5.2% of the explicit-deprecated operations and 8.0% of the
deprecated-in-description operations end with a removal.

Q3: Does the amount of deprecated operations always increase
over the API commit histories? According to our measurements the
number of deprecated operations, overall, have a small negative correlation
with the age of the corresponding API description (Fig. 6). When analyzing
individual API histories, we found some with a positive correlation between the
two variables (Fig. 7).

Q4: How does the amount of deprecated operations depend on the
API size? A weak negative correlation is found between φdep and the total
number of operations, suggesting that, overall, proportionally less deprecated
operations are found in larger APIs. This is confirmed by the more detailed
analysis on the individual API histories (Fig. 9).

Q5: The developers tend to remove or keep the deprecated op-
erations? How much time is needed for the removal? Analyzing the
probabilities reported in Table 4 and the distribution of deprecated operations
shown in Fig. 11 we can infer that developers tend to not remove operations
after their deprecation but, in case they do it, the tendency is to remove them
in the first 2 years.

6 Related Work

6.1 API Deprecation

Deprecation notifications in Web APIs has been studied by Yasmin et al. in [19].
In this work we are performing a broader-deeper analysis that goes towards the
same direction of [19] on a recently collected dataset of larger APIs with longer
change histories. Yasmin et al. collected 3,536 OAS belonging to 1,595 unique
RESTful APIs and they analyzed RESTful API deprecation on this dataset,
proposing a framework called RADA (RESTful API Deprecation Analyzer). The
dataset is formed by Swagger and OAS they mined from APIs.guru GitHub
repository. The authors filtered the dataset removing duplicate APIs, erroneous
OAS and unstable versions, resulting in 2,224 OAS that belongs to histories of



To deprecate or to simply drop operations? 13

Table 5. Comparison of dataset sizes and main findings between Yasmin et al. [19]
and this study

Yasmin et al. This study

Number of APIs 1,368 137,059
Number of OAS artifacts 2,224 360,882

APIs with deprecated components 16.0% 4.2%
APIs always-follow 12.0% 0.1%
APIs always-not-follow 85.0% 95.8%
APIs mixed 3.0% 4.1%

1,368 APIs. Then, they built a multi-version corpus comparing each OAS with
the correspondent one in the previous version. The application of RADA on
the filtered dataset shows that 11.55% of the versioned OAS contains at least
one deprecated API element, forming a subset of the dataset composed by 219
deprecation-related APIs. In this work, we adopted the same heuristics used by
RADA and applied them to a much larger API collection. It consists on deter-
mining which OAS components are deprecated by the providers based on the
optional boolean deprecated field and a list of keywords to be searched in com-
ponents description fields in order to identify potential components deprecation.
This approach, as explained by the authors, might suffer from some false positive
and false negative cases. Later, the authors sampled 50 random API versions,
which contain 3,444 API operations, and manually label the components depre-
cation. At the API version level, the comparison between the manual labeling
and the RADA results shows that the RADA accuracy is 100% while at the API
operation level RADA achieves a precision of 94% and a recall of 100%. Yasmin
et al. cluster the considered APIs within three categories: i) always-follow for
APIs which always deprecate before removing elements. ii) always-not-follow for
APIs which introduce breaking changes without any deprecation information in
previous versions; iii) mixed which contains APIs that show an hybrid behaviour
of i) and ii). In Table 5 we compare Yasmin et al. dataset and findings with our
study results. While Yasmin et al. consider deprecation at operation, request
parameters and responses level, in our study we focus only at operation level.
The study performed by Yasmin et al. reveals that the majority of the con-
sidered RESTful APIs do not follow the deprecated-removed protocol, in other
words those APIs doesn’t declare deprecation of components before removing
them, and only 45% of the studied APIs suggest alternatives consistently for all
deprecation-related operations.

Sawant et al. conducted a study [14] set up in two phases: an exploratory
investigation, followed by the evaluation of the desirability and feasibility of
enhancements they propose to the deprecation mechanism. In the first part of
their study, the authors investigate about the reasons that bring API produc-
ers to deprecate features, eventually remove them from their APIs, and their
expectations about the consumers reactions. They use an interpretive descrip-



14 Fabio Di Lauro et al.

tive technique to conduct and analyze interviews with 17 developers who work
on APIs and they challenge their findings conducting a survey with 170 Java
professionals. They propose three enhancements to the deprecation mechanism:
two of them are related to the deprecation mechanism while the third address an
issue at language level (Java). Their findings show how the API producers are
wary about removing deprecated features and our study confirm their finding
as shown in Fig. 11 and Table. 4. The authors found also that APIs consumers
tend to promptly react to deprecation only if the reasons behind the deprecation
is serious. This behaviour is probably due to the costs needed by the reactions.
The authors proposal is denoted as RSW, which is the acronym of the three en-
hancements proposed: i) Removal dates should be marked; ii) Severity should be
marked and iii) Warning mechanisms should be generic. The authors compared
the deprecation mechanism implementation in 23 popular and new languages
concluding they are not consistent in implementing it and none of them imple-
ment RSW fully. Unfortunately in OpenAPI there is no explicit support for
such detailed deprecation metadata.

Brito et al. measure the usage of deprecation messages in Java and investigate
about the need of a tool to recommend such messages [1]. The authors performed
a large-scale analysis over 661 real world Java systems discovering that i) 64% of
the API elements analyzed are deprecated with replacement messages: ii) they
didn’t find a concrete effort to improve deprecation messages over time and iii)
they found statistically significantly differences between systems whom adopt a
deprecation mechanism with replacement messages and ones which didn’t use
it. Unlike our approach that consists on tracking deprecation in each committed
version of the APIs, Brito et al. analyzed only the first and the last release
of each system considering the detected differences representative of a general
overview of the system’s evolution process.

6.2 Web APIs Evolution

Li et al. perform an empirical study [7] on Web API migration analyzing five
popular APIs. The authors clustered the detected API changes into 16 change
patterns and they identified 6 new problems in migrating Web API clients. Fur-
thermore, they identified two unique characteristics of Web API evolution pro-
cesses. They observe that there are more changes at the Java level (high level
libraries provided by the APIs maintainers) rather than at the HTTP level and
Web API evolution affects more operations than local API changes. Sohan et al.
analyzed the evolution of multiple Web APIs [16] collected from proprietary and
open-source environments. They used the differences between literature and in-
dustry practices to identify unresolved research problems. The authors identified
six new change patterns to identify changes in Web API versions and provide
also a list of recommendations for developers of evolving Web APIs such as
the use of semantic versioning, differentiate the releases for bug fixes and new
features, auto generate API documentation cross-linked with change logs and
provide live API explorers. They found a lack of standard approaches to deal
with Web API versioning, documentation and change communication. In our



To deprecate or to simply drop operations? 15

study we found a similar problem regarding the deprecation process: while the
new OpenAPI standard provide a precise way to deprecate operations, some
developers prefer to annotate components as deprecated with natural language
using the OAS description fields. In this paper we extended the findings of the
authors of [2] on Web API evolution with more fine-grained metrics, focusing
on detecting the presence of potentially breaking changes and the usage of the
deprecation concept, on a much larger collection of API descriptions.

7 Conclusion

In this empirical study we found that most API descriptions in our collection do
not have any deprecated operation in their commit histories. Still, within 5,805
APIs we detected a total of 21,754 operations deprecated explicitly or using natu-
ral language descriptions. We found that only 5.2% of the explicit-deprecated and
8.0% of the deprecated-in-description operations were eventually removed after
their deprecation while 14.1% of the created operations were removed without
first annotating them with any kind of deprecation. In Fig. 11 we can observe the
distributions of the age of operations removed and kept after their deprecation.
We can conclude, observing the probabilities measured in Table 4, that develop-
ers tend not to remove operations after their deprecation but, in case they do it,
the tendency is to remove them within the first 2 years. Furthermore, we detect
a low negative correlation between the number of deprecated operations and the
age of their API and a weak negative correlation between the total amount of
the operations and the ratio between the number of explicit-deprecated and the
total amount of operations. The latter finding indicates that explicit-deprecated
operations are more frequent in smaller APIs, rather than in bigger ones.

While it is interesting to study the operations evolution and how the API
maintainers tend to use (or not) the deprecation concept, in order to handle the
introduction of the breaking changes, we want to investigate possible extensions
of this study to answer the following research questions:

– How many deprecated operations are found in APIs offered in a production
environment?

– How many deprecated, and removed, operations are replaced with an an-
other endpoint?

– How many API descriptions report replacement information when they
introduce a deprecation?

Acknowledgements

This work is funded by the SNSF, with the API-ACE project nr. 184692.

References

[1] Brito, G., Hora, A., Valente, M.T., Robbes, R.: Do developers deprecate apis
with replacement messages? a large-scale analysis on java systems. In: 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, pp. 360–369 (2016), https://doi.org/10.1109/SANER.2016.99

https://doi.org/10.1109/SANER.2016.99


16 Fabio Di Lauro et al.

[2] Di Lauro, F., Serbout, S., Pautasso, C.: Towards large-scale empirical assess-
ment of web apis evolution. In: 21st International Conference on Web Engineering
(ICWE2021), Springer, Springer, Biarritz, France (May 2021)

[3] Dig, D., Johnson, R.: How do apis evolve? a story of refactoring. Journal of soft-
ware maintenance and evolution: Research and Practice 18(2), 83–107 (2006)

[4] Hora, A., Etien, A., Anquetil, N., Ducasse, S., Valente, M.T.: APIEvolutionMiner:
Keeping api evolution under control. In: Proc. IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering (CSMR-WCRE), pp. 420–424
(2014)

[5] Karlsson, S., Čaušević, A., Sundmark, D.: Quickrest: Property-based test gener-
ation of openapi-described restful apis. In: 2020 IEEE 13th International Confer-
ence on Software Testing, Validation and Verification (ICST), pp. 131–141 (2020),
https://doi.org/10.1109/ICST46399.2020.00023

[6] Lauret, A.: The Design of Web APIs. Manning (2019)
[7] Li, J., Xiong, Y., Liu, X., Zhang, L.: How does web service api evolution affect

clients? In: 2013 IEEE 20th International Conference on Web Services, pp. 300–
307 (2013), https://doi.org/10.1109/ICWS.2013.48

[8] Li, J., Xiong, Y., Liu, X., Zhang, L.: How does web service API evolution affect
clients? In: Proc. 20th International Conference on Web Services (ICWS) (2013)

[9] Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U., Stocker, M.: Interface evo-
lution patterns — balancing compatibility and flexibility across microservices life-
cycles. In: Proc. 24th European Conference on Pattern Languages of Programs
(EuroPLoP 2019), ACM (2019)

[10] Murer, S., Bonati, B., Furrer, F.: Managed Evolution - A Strategy for Very Large
Information Systems. Springer (2010), ISBN 3-642-01632-4

[11] open-api-spec-validator: https://github.com/p1c2u/openapi-spec-validator
(2022), accessed: 2022-05-11

[12] OpenAPI Initiative: https://www.openapis.org/ (2022), accessed: 2022-05-11
[13] Prance: https://pypi.org/project/prance/ (2022), accessed: 2022-05-11
[14] Sawant, A.A., Aniche, M., van Deursen, A., Bacchelli, A.: Understanding devel-

opers’ needs on deprecation as a language feature. In: 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pp. 561–571 (2018),
https://doi.org/10.1145/3180155.3180170

[15] Sawant, A.A., Huang, G., Vilen, G., Stojkovski, S., Bacchelli, A.: Why are features
deprecated? an investigation into the motivation behind deprecation. In: 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pp. 13–24 (2018), https://doi.org/10.1109/ICSME.2018.00011

[16] Sohan, S., Anslow, C., Maurer, F.: A case study of web api evolu-
tion. In: 2015 IEEE World Congress on Services, pp. 245–252 (2015),
https://doi.org/10.1109/SERVICES.2015.43

[17] Varga, E.: Creating Maintainable APIs. Springer (2016)
[18] Wang, S., Keivanloo, I., Zoua, Y.: How do developers react to RESTful API

evolution? In: Proc. International Conference on Service-Oriented Computing, p.
245–259, Springer (2014)

[19] Yasmin, J., Tian, Y., Yang, J.: A first look at the deprecation of rest-
ful apis: An empirical study. In: 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 151–161 (2020),
https://doi.org/10.1109/ICSME46990.2020.00024

https://doi.org/10.1109/ICST46399.2020.00023
https://doi.org/10.1109/ICWS.2013.48
https://github.com/p1c2u/openapi-spec-validator
https://www.openapis.org/
https://pypi.org/project/prance/
https://doi.org/10.1145/3180155.3180170
https://doi.org/10.1109/ICSME.2018.00011
https://doi.org/10.1109/SERVICES.2015.43
https://doi.org/10.1109/ICSME46990.2020.00024

	To deprecate or to simply drop operations?An empirical study on the evolution of a large OpenAPI collection

