Software and Systems Modeling (2022) 21:1877-1906
https://doi.org/10.1007/s10270-022-01009-w

SPECIAL SECTION PAPER

®

Check for
updates

Live process modeling with the BPMN Sketch Miner

Ana Ivanchikj' - Souhaila Serbout’® - Cesare Pautasso'

Received: 22 February 2021 / Revised: 13 February 2022 / Accepted: 28 March 2022 / Published online: 28 June 2022
© The Author(s) 2022

Abstract

BPMN Sketch Miner is a modeling environment for generating visual business process models starting from constrained
natural language textual input. Its purpose is to support business process modelers who need to rapidly sketch visual BPMN
models during interviews and design workshops, where participants should not only provide input but also give feedback
on whether the sketched visual model represents accurately what has been described during the discussion. In this article,
we present a detailed description of the BPMN Sketch Miner design decisions and list the different control flow patterns
supported by the current version of its textual DSL. We also summarize the user study and survey results originally published
in MODELS 2020 concerning the tool usability and learnability and present a new performance evaluation regarding the
visual model generation pipeline under actual usage conditions. The goal is to determine whether it can support a rapid
model editing cycle, with live synchronization between the textual description and the visual model. This study is based on
a benchmark including a large number of models (1350 models) exported by users of the tool during the year 2020. The
main results indicate that the performance is sufficient for a smooth live modeling user experience and that the end-to-end
execution time of the text-to-model-to-visual pipeline grows linearly with the model size, up to the largest models (with 195
lines of textual description) found in the benchmark workload.

Keywords Business Process Model and Notation (BPMN) - Process mining - Domain-specific languages - Performance
evaluation

1 Introduction ing one notation often does not suit the needs of all its

users.” Thus, following existing text-based modeling tools

The Business Process Model and Notation (BPMN) standard
[35] facilitates the communication and knowledge sharing
between domain experts, process participants, and business
analysts due to the standardized language [68] and its graph-
ical visual notation [S1] for modeling business processes
[66]. Most BPMN modeling editors support the design of
business process models by dragging, dropping and con-
necting visual elements. However, experience with using
UML at Ericsson [44] has shown that “when a DSL is large,
covers a wide aspect and has different types of users, hav-

Communicated by S. Abrahao, E. Syriani, H. Sahraoui, and J. de Lara.

B<I Souhaila Serbout
souhaila.serbout@usi.ch

Ana Ivanchikj
ana.ivanchikj@usi.ch

Cesare Pautasso
c.pautasso@ieee.org

Software Institute, USI, Lugano, Switzerland

(e.g., PlantBPMN [16], PlantUML! and its PlantText” envi-
ronment, ZenUML,3 WebsequenceDiagrams,4 Textografos),
which generate visual models from textual descriptions, we
have designed a tool which supports a textual notation for
BPMN. In this article, we present the design and evaluation
of the tool, which we called BPMN Sketch Miner.® It is a
proof-of-concept tool for rapidly generating BPMN models
from descriptions specified with a textual domain-specific
language (DSL).

The aim of the tool is to speed up the iteration cycles
of requirements gathering leading to the initial sketch of
a process model, with a language mimicking structured
notes taken during participant interviews [53] and design

! https://plantuml.com/.

2 https://www.planttext.com/.

3 https://app.zenuml.com/.

4 https://www.websequencediagrams.com/.

https://textografo.com/.

6 https:/www.bpmn-sketch-miner.ai.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01009-w&domain=pdf
http://orcid.org/0000-0002-8144-2606
https://plantuml.com/
https://www.planttext.com/
https://app.zenuml.com/
https://www.websequencediagrams.com/
https://textografo.com/
https://www.bpmn-sketch-miner.ai

1878

A. lvanchikj et al.

workshops [8,42]. To accomplish the goal, the tool aug-
ments textual modeling with process mining, thus reducing
the complexity and the number of keywords of the textual
DSL. Its modeling environment replaces the complex stencil
palette usually found in graphical editors with a simple text
editor. Textual descriptions are transformed into diagrams,
which correctly use the BPMN visual syntax, simultaneously
while the modeler is typing them. The main language design
challenge consists of the trade-off between usability, learn-
ability, and expressiveness of the textual DSL. While BPMN
is a rich notation with hundreds of constructs, our DSL
focuses on a subset of the notation [69] with the intention
to support an iterative model refinement process, where the
initial model is obtained quickly from its constrained natural
language description. Basic type annotation keywords need
to be learned only if it becomes necessary to classify model
elements during a second refinement step. At this point, the
model can also be exported so that its refinement can continue
using traditional standard-compliant BPMN editors [12]. In
other words, we see text-based modeling as complementary
to graphical editors, and particularly useful to quickly get
started with an initial sketch.

In general, we present a model-driven engineering use
case, where process models are inferred from process
instances, but also explicitly described where such process
mining step would fall short of bringing the proposed tex-
tual process modeling notation closer to the practitioners’
domain.

The main contributions of this article are: (1) the design of
a tool which needs to balance the trade-off between the use
of textual modeling and process mining for quickly creating
valid visual BPMN models and (2) the evaluation of the tool
with respect to its usability, learnability, DSL expressiveness,
as well as its performance under real-world usage conditions.

The evaluation of the usability and learnability of the
tool was originally published in [31].” We conducted a user
study and surveys [33] involving students having no prior
knowledge of the BPMN language, as well as industry ana-
lysts, with advanced BPMN knowledge, who typically enjoy
working with “quick modeling” shortcuts as they need to,
as mentioned by one of them, “represent the content of their
processes without having to fiddle with the graphical layout.”
The results of this evaluation are summarized in this article,
which also includes: (a) additional answers to the SUS survey
questionnaire with respect to the ones presented in MODELS
2020 and (b) qualitative feedback from users about the ben-
efits and real world applicability of the tool (Table 4).

7 This article includes and extends the work that the authors have
presented at the 23rd International Conference on Model-Driven Engi-
neering Languages and Systems (MODELS) under the title “From Text
to Visual BPMN Process Models: Design and Evaluation” [31].

@ Springer

In terms of DSL expressiveness, this article presents how
the textual language has been further extended to support
additional BPMN constructs, such as data and data store
objects as well as interrupting and non-interrupting boundary
events. This has resulted with greater coverage of the BPMN
standard metamodel, as shown using workflow patterns in
Sect. 2.2.3.

The performance evaluation is focused on determining
whether the tool can support a live modeling cycle with
minimal delay in the synchronization of the visual BPMN
diagram obtained from the textual description. More in detail,
we are interested to detect the presence of bottlenecks in
the model generation pipeline, which is present in many of
the above-mentioned text-to-graphical modeling tools. This
helps to determine whether and where further performance
optimization investments should be directed by the model-
driven engineering research community. Is this bottleneck
specific to the process mining and model inference step? Or
does it lie in the model transformation, rendering and layout
steps, which also appear in other text-to-graphical modeling
tools as well?

To answer these questions, we have performed an exten-
sive performance evaluation based on workloads obtained
from real-world usage. The tool implementation has been
instrumented to obtain a detailed performance profile of the
textual-to-graphical model pipeline execution, and metrics
for characterizing the size of the input and output models
have been defined.

The main result is that within the tool operating range, the
tool performance is sufficient to keep the visual and textual
representation synchronized as the user edits the text: Exe-
cuting the text-to-model-to-visual-diagram pipeline took 77
ms on average and 513 ms in the worst case. Also within the
range of model sizes of the given workload (up to 195 lines
of text resulting in models with up to 160 nodes and 164
edges), the performance scales linearly with different pro-
cess size metrics. The BPMN construct which has the most
impact on performance is swimlanes, which stress the auto-
matic layout, by far the most expensive of the tool pipeline
stages.

The rest of this article is organized as follows: In Sect. 2,
we describe the design of the BPMN Sketch Miner and its
textual DSL, while in Sect. 3 we summarize the results of the
usability and learnability evaluation. We present the results
from the conducted performance measurements in Sect. 4.
We provide an overview of the related work in Sect. 5 while
drawing some conclusions in Sect. 6 before outlining our
plans for future work in Sect. 7.

Live Process Modeling...

1879

2 BPMN Sketch miner design

The design of BPMN Sketch Miner (Fig. 1) is driven by the
attempt to trade off the expressiveness against the learnability
of the textual DSL, without sacrificing the efficiency with
which the tool can be used to produce BPMN diagrams.

2.1 Live modeling environment

We have identified two different contexts where the BPMN
Sketch Miner can be used: (1) during co-located or remote
requirements elicitation meetings between domain experts
and business analysts and (2) in classrooms while teaching
BPMN. In the first context, there can be two usage scenarios:
the more common one, where the business analysts inter-
view the domain experts while creating the BPMN model, or
the one where domain experts are empowered to participate
in the creation of the BPMN model themselves. That said,
the goal of BPMN Sketch Miner is to streamline the rapid
model creation for obtaining feedback from domain experts
and process participants, and to facilitate learning BPMN
and process modeling. Studies have shown that starting with
textual input (e.g., activity tables, written use-case scenar-
ios) and then abstracting the information using visual models
improves process understanding for people who are not pro-
cess modeling experts [5,11]. Thus, given the goal of our
tool, and the contexts in which its use is envisioned, our first
design decision was to use textual input for the creation of
visual models to be represented in BPMN. The second design
decision, which is the focus of this paper’s performance eval-
uation, was to introduce a live modeling environment, where
the BPMN model is produced in real time as the textual
description is typed. The third design decision was to deliver
it as a web-based tool, thus avoiding the need for software
installation to get started with a modeling session.

The main flow of interaction with the tool involves the
following steps:

1. Open a web link to go directly into the modeling environ-
ment (no user registration or authentication is required).

2. To edit an existing model, use the provided link which
embeds its textual description. The link can be easily
shared in an email message, chat room, or also embedded
in documentation. For example, clicking on any BPMN
diagram shown in this paper will open the diagram in the
tool.

3. Asthe textual description is edited, the BPMN diagram is
immediately updated (no need to click a submit or refresh
button).

4. At the end of the session, export the generated BPMN
model in SVG, PNG, or a standard-compliant BPMN
XMI file formats so that it can be displayed or further
refined in any compatible tool.

2.2 BPMN as a textual domain-specific language

The main feature of the BPMN Sketch Miner is its textual
DSL, by means of which the user can enter a textual descrip-
tion of a process. The purpose of the textual language is
to provide a simple notation for easy and rapid [23] repre-
sentation of a process by enumerating execution traces of its
instances (e.g., while taking notes describing concrete exam-
ples during an interview) from which valid BPMN sketches
(i.e., non-executable models [3]) can be obtained.

The main design constraint for the DSL is that it should
reflect the largest possible subset of BPMN (a rather large
and complex visual notation [69]) while using a limited
number of textual constructs, which should be easy to learn
and remember. Unlike the graphical syntax, the textual one
is characterized by its mono-dimensional structure [22].
This constraint makes it an adequate choice for representing
sequential business processes but makes it challenging to use
plain text to represent control flow graphs of arbitrary struc-
tures like the ones which can be visualized in BPMN. Like
first proposed in [30], we address this challenge by using pro-
cess mining [62] to reconstruct a model of the process control
flow graph from a set of sequential execution traces, which
can be easily written in plain text. This also makes it possible
to target domain experts being interviewed during require-
ments elicitation who have no or limited BPMN knowledge.
Following Karsai et al. [36]’s advice, the textual DSL used
in the tool represents ordered lists of tasks and events that are
envisioned to be written as the process participants enumer-
ate their activities, or as BPMN students read a given process
description they are supposed to model. These lists are then
used as input traces by a process mining algorithm.

2.2.1 Design decisions

Based on continuous formative evaluation with test users,
including BPMN consultants, experts, and trainers, we have
extended the textual DSL, which now supports the BPMN
constructs shown in Table 1. The most important design deci-
sions involve:

— annotating the name of the role followed by “: ”, to speed
up annotating tasks or events with their roles. The role is
applied to all tasks following the annotation until another
role is declared. The roles are automatically mapped to
swimlanes or pools depending on the presence or absence
of handovers and message exchange between them.

— events are distinguished from tasks because they are
entered in round parenthesis referring to their round
visual shape. The mining algorithm determines auto-
matically whether they are start, intermediate, or end
events, depending on whether there are stated tasks pre-
ceding/following the event in question.

@ Springer

1880

A. lvanchikj et al.

BPMN Sketch Miner

Sketch

Tutorial

Examples Help Feedback
Layout: & - Zoom: 1:1 Fit Share: Link

Senior

Export: SVG PNG BPMN

Finance

Junior: (receive claim) Janie
Enter the claim

Do a basic check

(send rejection notification)

Do a basic check P
Mark claim as eligible

Senior: Perform disability assessment
Determine benefit entitlement

(send outcome to customer)

Register the entitlement

Senior: Perform disability assessment
Require a medical report

Junior: (send authorization request)
(receive authorization)

(send medical report request)
(receive medical report)

Senior: Review medical report
Determine benefit entitlement

Register the entitlement
Finance: Trigger first entitlement
Schedule monthly payments
(send payment)

(send payment)

(send payment)
Senior: Review the benefit
(send termination notification)

Senior: Review the benefit
Do a simple check
Determine benefit entitlement

2

e

i
Review the benefit X
(send medical report request) |
|

=

Determine benefit
entitlement

(=) outcome to customer

ister the
entitiement |

BDe—

[mm—

| Dolumvluhxk] 4
f
K Review the nmm/

/

X

termination

" Review medical
| repont notification

J

Fig. 1 BPMN Sketch Miner with the textual and visual BPMN representation of the process modeled during the user study of [31]. To make it

easier to read, click here for opening the diagram in the tool

— boundary events use their own type annotations, which
are related to the corresponding event type. For example,
the start/intermediate receive or intermediate/final
escalate event corresponds to the received or
escalated boundary events. Likewise, the timer
or error events correspond to the deadline or
exception boundary events. This should make it eas-
ier to remember the event type keywords without having
to specify one more keyword to distinguish boundary
events such as boundary timer. Non-interrupting
boundary events are entered in double round parenthe-
sis referring again to their visual shape.

@ Springer

— data objects are detected because square brackets are
found within the corresponding line. We chose to use
square brackets as they are commonly used to annotate
the state of a data object [47]. As databases are commonly
used for permanent data storage, we use the keyword db
before the square brackets to depict a data store.

— tasks and events can be annotated by prefixing them
with a type. This addresses the requirement of business
analysts who need to refine their model after the initial
sketch. Stating event types and task types requires the
use of keywords, which attempt to match how those con-
structs are named in BPMN.

https://www.bpmn-sketch-miner.ai/index.html#EYBwNgdgXAbgjAKALRIQKQK4QJYHsBOUABABT4CmAxudjOUZWAIbYC2AlAgKIQAu5+IrwAW9Ri1YIAIriJMiwJgGdslBqMoBrBCSXkIAEyIUAVlV54IRCLgsAzVUwu4InBADpP02fMUq1lBqaRAgAskz4weJsckpE5GDYAObYwGDkCADK+niERAAKAnYErEQG2EpMwNiJvACesXpKSqz6vCFS5Pz4rNgQ9MD65A7tbdi86a18Ibr6RrgYvJS4rUKylBhKvCsCnABK5ClbAkKi8Xzjk20eXjfuWTkExIX4xT1lFVU14w3KTS1tEIHACOGGwFDkRFa5UoTDAxnIIAIvHQWFyxFmhjki2EBGwAC8nJYEaDyFtOGQqDQ6NiRHjCc5XDo9FjoY54RQkfh2hRSeSdBRqLR6GzYRzEcjONkcE8iAcYNhyAB3KHkGFwhFclGdbq9foKIYjc4WCbkKYozz3O4IA5HbqnehjU3mhAAMT6TAg1GIABV8MkkicHPgtsbLmbAVlAmqMOkoS4RGAGiAmHVzUpmXMiCm020KSyjDnzW5LZmsUW8w8ZXl5YqVSIBobxmWjLqPYzrLZsA5YYy3Nbpei5eQFcqHQb+iNvJCVKxwGIgtIugI9Y3J+Mw87rqXrbWxw2J8Nm5ijKKNZzkSSMGTeJxS0A
https://www.bpmn-sketch-miner.ai/index.html#EYBwNgdgXAbgjAKALRIQKQK4QJYHsBOUABABT4CmAxudjOUZWAIbYC2AlAgKIQAu5+IrwAW9Ri1YIAIriJMiwJgGdslBqMoBrBCSXkIAEyIUAVlV54IRCLgsAzVUwu4InBADpP02fMUq1lBqaRAgAskz4weJsckpE5GDYAObYwGDkCADK+niERAAKAnYErEQG2EpMwNiJvACesXpKSqz6vCFS5Pz4rNgQ9MD65A7tbdi86a18Ibr6RrgYvJS4rUKylBhKvCsCnABK5ClbAkKi8Xzjk20eXjfuWTkExIX4xT1lFVU14w3KTS1tEIHACOGGwFDkRFa5UoTDAxnIIAIvHQWFyxFmhjki2EBGwAC8nJYEaDyFtOGQqDQ6NiRHjCc5XDo9FjoY54RQkfh2hRSeSdBRqLR6GzYRzEcjONkcE8iAcYNhyAB3KHkGFwhFclGdbq9foKIYjc4WCbkKYozz3O4IA5HbqnehjU3mhAAMT6TAg1GIABV8MkkicHPgtsbLmbAVlAmqMOkoS4RGAGiAmHVzUpmXMiCm020KSyjDnzW5LZmsUW8w8ZXl5YqVSIBobxmWjLqPYzrLZsA5YYy3Nbpei5eQFcqHQb+iNvJCVKxwGIgtIugI9Y3J+Mw87rqXrbWxw2J8Nm5ijKKNZzkSSMGTeJxS0A

Live Process Modeling... 1881

Table 1 BPMN constructs supported by the BPMN Sketch Miner

BPMN construct Derived from mining Explicitly modeled DSL construct

Tasks v State each task name in a new line

Task type v Use the “manual,” “user,” “script,” “rule,”
“service,” “send,” “receive” keywords

Events v v Use “()” to indicate an event. Whether it is a

start, intermediate, boundary or end event is
automatically inferred.

Event type v Use the “time,” “error,” “receive,” “send,”
“notify,” “publish,” “escalate,” “terminate”
keywords

Link events v Derived from the lack of a matching fragment

Boundary event type v Use the “deadline,” “exception,” “received,”

“escalated” keywords, use “(())” to indicate
non-interrupting boundary event

Exclusive gateway split/merge v Repeat the last common task before the split

Labeled exclusive gateway split v Use “?” after the name of the label

Loops v Repeat the tasks in the loop

Sequence flow v State tasks in the order in which they happen

Conditional flow v State the condition following the gateway label

Message flow v Use matching names for the throw and catch
events

Event-based gateway v The last common task before the split has to be
followed by events

Parallel AND gateway v Separate the parallel tasks with “|”

Lanes v State the name of the lane followed by “:” and a
task

Pools v Lanes become pools in case of message exchange

Data objects v Use “[]” to delimit a data object or the state of a
data object

Data store v Use “db []” keyword to delimit a data store, text
can be included in “[]”” to name the data store.

Text annotation v Use “//”” before the task to which the text

annotation is to be attached

— exclusive split gateways can be annotated with a label, into the textual description vs. explicitly stating a construct,
specified as a question (i.e., a line ending with ?) in as evident in Table 1.
the text. As exclusive gateways denote decisions, the Our goal is, whenever possible, to reduce the cognitive
line after the question represents the chosen alternative effort of the users [68] by not requiring them to explicitly
and becomes the expression associated with the outgoing state BPMN constructs. For example, as event-based gate-
conditional flow of the gateway. ways can be deduced easily by analyzing traces in which the

— we intentionally decided not to mine parallel gateways same task is followed by different events, we do not require
as it would require manually entering multiple traces the user to explicitly include such gateways in the textual
including different permutations of the same set of tasks, ~ description. The same applies to message flows which can

which early adopters considered too much effort. Instead, D¢ inferred by detecting a matching message name for a pair
of send and receive tasks or message events. Likewise, lanes

are automatically clustered into pools based on the presence
of message flow or sequence flow handovers.

parallel tasks are simply declared on the same line by sep-
arating them with “|”.

The design of the BPMN Sketch Miner’s textual DSL
attempts to draw the line between the usefulness of mining
algorithms to infer BPMN constructs implicitly embedded

@ Springer

1882

A. lvanchikj et al.

2.2.2 Language syntax

The textual DSL concrete syntax is meant to be closer to
natural language than to common textual programming lan-
guages, which are based on control structures, blocks, and the
use of keywords. The textual DSL’s context-free grammar is
expressed in the following EBNF specification:

text) := ((trace) "TEOL’)T "EOF’;

trace) := (dots) ({line) "EOL’ (dots))T;

dots) :=1[...’EOL’];

line) ::= (parallel) | (annotation) | (comment) ;

comment) ::="//I’ (any character until EOL)* ;
annotation) ::="/I" (label) ;
parallel) ::= (element) (I’ (element))*;

data)) | (role);

role) ::= (label)

XORIlabel) ::= (label)’? ;

task) ::= [(ttype)] (label);

event) :="([(etype) | (ibetype)] (label)) | ((

betype) (label)))’;

ttype) ::=(send’ | 'receive’ | 'user’ | 'manual’ | ’service’
| ’script’ | 'rule’) ;

(etype) ::= (’start’ | "finish’ | "timer’| send’ | 'receive’ |
’publish’ | "notify’ | ’error’ | *escalate’ | terminate’) ;
(ibetype) ::= (’deadline’ | ’exception’ | ‘received’ | ’esca-
lated’) ;

(
(
(
(
(
(
(
(element) ::= [(role)] ((task) | (event) | (X O Rlabel) |
(
(
(
(
(
(
(

(betype) ::= ('deadline’ | 'received’ | *escalated’) ;
(data) ::="[" [{dtype)] (label) ’] | [{dtype)] ({label)
[’ (labelstate) ’] ;

(dtype) ::=('db’) ;

(labelstate) ::= (label) ;

(label) ::= any valid BPMN element label;

The syntax first breaks down the textual description as a
set of traces: sequences of lines, which may or may not be
fragments, i.e., include three dots. Then, lines are classified as
comment lines (which are ignored), annotations, or elements.

Annotation labels are implicitly associated with the ele-
ment found on the following line, unless they are on the last
line of a sequence when they are associated with the pre-
ceding element. Multiple lines with annotations are merged
together in the same visual element.

While each line of text usually represents one model ele-
ment, they can actually represent multiple elements only if
these elements are part of a parallel flow (indicated by the
pipe | character). Otherwise, the language follows the rule:
Each element is declared on a different line.

Elements can be placed into pools or swimlanes by preced-
ing them by a role annotation (labels followed by the colon :
character). Stand-alone role annotation (not followed by any
element on the same line) provides the default role for the

@ Springer

elements which are first found on the next lines, unless their
role is overridden by a role annotation found on the same
line.

Elements can be tasks, events, XOR gateway labels, or
data objects. Different non-task elements are detected by
using different kinds of punctuation or parenthesis: (round)
for events, [square] for data objects, and question marks? for
XOR gateway labels.

Tasks and events can be further classified by including
a keyword representing their type as the first word of their
label. This will be omitted from the label and transformed
into the corresponding visual icon.

While events are automatically turned into start, interme-
diate, or end event, different event-type keywords are used to
place them on the task boundary (i bet ype and bet ype). Since
boundary events can be interrupting or non-interrupting, we
introduce an additional set of round parenthesis to distin-
guish them. While events, as tasks, can also be left untyped,
boundary events require a specific type annotation.

While the events should be placed within single or dou-
ble round parenthesis, data objects are listed within square
parenthesis, but can also follow the common practice of only
enclosing the state of the data object within square paren-
thesis. In this case, the square parenthesis will be kept and
displayed as part of the data object label in the diagram. Data
objects can also be annotated with an optional type, in this
case, used to turn them into data storage elements.

2.2.3 Control flow patterns

While BPMN support for workflow patterns is well known
[37,56,67], in Tables 2 and 3 we show a few abstract usage
examples to illustrate to which extent the BPMN Sketch
Miner textual DSL supports a number of important work-
flow patterns. The tables showcase how these frequently used
modeling patterns can be expressed with the textual DSL.

2.3 Model generation pipeline

Using textual input to generate visual BPMN models requires
multiple model generation and transformation steps (Fig. 2).
The initial control flow model is generated using a process
mining algorithm applied to traces that are extracted from
the textual input. The textual annotation of roles, task, and
event types is part of the textual modeling and thus is not fed
into the mining algorithm, but used during a second stage
as follows: First, the nodes of the control flow graph are
transformed into tasks, data objects, or events (according to
the type annotations found in the original description). Then,
the role annotations are used to place the elements in the
corresponding swimlanes.

This nonlinear pipeline structure makes it possible to
merge the result of the process mining stage with the addi-

Live Process Modeling...

1883

Table2 Control flow patterns
[63] supported by the BPMN
Sketch Miner DSL. To make it
easier to read, click on the text
link will open the diagram in the
tool. Sequence, Arbitrary
Cycles, Exclusive choice,
Parallel split and
synchronization, Implicit
termination, Explicit
termination

Sequence

A
B
C

Arbitrary Cycles

Mo w>

Q =

o]

Parallel split and synchronization

Implicit termination

A
BIC

Exclusive choice

Explicit termination

A
BIC

B
(terminate)

@ Springer

https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQZQKYEcCuGIDGGUCAgggEIIDCQA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQQQE7AJYBcMCGGAngAQDCxAxmAKYDOU6CAQggCIICiCz53CAHTDewwQIBiHIcKA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQQQE7AJYBcMCGGAngAQDCxAxmAKYDOU6CAQggCIICiCz53CAHTDewwQIBiHIcKA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQUQB4GMwFcDOAljAKYAEWAFgPaFYlQICCCAQgswgMJA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQUQB4GMwFcDOAljAKYAEWAFgPaFYlQICCCAQgswgMJA
https://www.bpmn-sketch-miner.ai/index.html#EYBwNgdgXAbgjAKALRIQBQIYCcNjAUzAAIBncASwBciMIATUgTwgGMALLAewnIC8NK5blAQBBBACEAPgGEEAESA
https://www.bpmn-sketch-miner.ai/index.html#EYBwNgdgXAbgjAKALRIQBQIYCcNjAUzAAIBncASwBciMIATUgTwgGMALLAewnIC8NK5blAQBBBACEAPgGEEAESA
https://www.bpmn-sketch-miner.ai/index.html#EYBwNgdgXAbgjAKALRIQBQIYCcNjAUzAAIBncASwBciMIATUgTwgGMALLAewnIC8NK5blAQBBBACEAPgGEEAESA
https://www.bpmn-sketch-miner.ai/index.html#EYBwNgdgXAbgjAKALRIQBQIYCcNjAUzAAIBncASwBciMIATUgTwgGMALLAewnIC8NK5blAQBBBACEAPgGEEAESA
https://www.bpmn-sketch-miner.ai/index.html#EYBwNgdgXAbgjAKALRIQSQLbgJYGNsAuABAQKYBOG2EAhgdgPbQICCCAQgD4DCCAdAIT9B7BABEhAvgl5A
https://www.bpmn-sketch-miner.ai/index.html#EYBwNgdgXAbgjAKALRIQSQLbgJYGNsAuABAQKYBOG2EAhgdgPbQICCCAQgD4DCCAdAIT9B7BABEhAvgl5A
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQUQB7gJYGNsAuABAQKYBOAtthAIYHYD20CAgggEIA+AwggHSCEAoRwQAKMlRr1SASmGD+CHkA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQUQB7gJYGNsAuABAQKYBOAtthAIYHYD20CAgggEIA+AwggHSCEAoRwQAKMlRr1SASmGD+CHkA

1884

A. lvanchikj et al.

Table 3 Control flow patterns
[63] supported by the BPMN
Sketch Miner DSL. To make it
easier to read, click on the text
link will open the diagram in the
tool. Deferred Choice, Cancel
Task, Data Transfer, Simple and
Multi-Merge, Persistent Trigger,
Work Item Deadline
(Continued)

@ Springer

Deferred Choice

A
(e)

A
(£

Cancel Task

A
C

A
(exception)

Data Transfer

Simple and Multi- Merge

Persistent Trigger

(receive a)
A
(receive b)
B

Work Item Deadline

Work Item
((deadline 1 hour))
R

Work Item
N

Work Item
(deadline 1 day)
C

Work_Item

https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQEQKYDMMCdcYAmABAMIAWA9gJYDGGUCAgggBQYCUCzbWHQA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQEQKYDMMCdcYAmABAMIAWA9gJYDGGUCAgggBQYCUCzbWHQA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQQQQYQehAKAUwA8BjAkAFwEsB7CASgQCEsEg
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQQQQYQehAKAUwA8BjAkAFwEsB7CASgQCEsEg
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQQQQbQCIF0EBCQA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQQQQbQCIF0EBCQA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQZQJYFtwFMAEAhhACb4CyArmAC4ZIW4BOA5rlAgEIIAiCCAYV5A
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQZQJYFtwFMAEAhhACb4CyArmAC4ZIW4BOA5rlAgEIIAiCCAYV5A
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQZQJYFtwFMAEAhhACb4CyArmAC4ZIW4BOA5rlAgEIIAiCCAYV5A
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQCgE4FMDGWCWMWABAIYCUCAgutnoScJQEIJA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQCgE4FMDGWCWMWABAIYCUCAgutnoScJQEIJA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQdQPYCcDWACASQBcBTAWwQApKATEgQxrAEsIS848ALDAVywCUAhACUE6bPmLkEAOXGZchUhVoMmrdpxr0AnsIDCCIA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQdQPYCcDWACASQBcBTAWwQApKATEgQxrAEsIS848ALDAVywCUAhACUE6bPmLkEAOXGZchUhVoMmrdpxr0AnsIDCCIA
https://www.bpmn-sketch-miner.ai/#EYBwNgdgXAbgjAKALRIQdQPYCcDWACASQBcBTAWwQApKATEgQxrAEsIS848ALDAVywCUAhACUE6bPmLkEAOXGZchUhVoMmrdpxr0AnsIDCCIA

Live Process Modeling...

1885

Fig.2 Model generation and Textual BPMN
transformation pipeline \
DSL Parser
Traces
Process Mining Algorithm Role, Task and Event Annotations

BPMN Model| (Control Flow)

Model Transformation

BPMN Model| (Control Flow, Pools, Swimlanes, Events)

Automatic Layout

BPMN Model| (with Diagram Interchange metadata)

Renderer

PN

SVG Image PNG Image

tional modeling information provided by the user as part of
the original input.

While this would already be sufficient for obtaining a valid
BPMN process model, in order to make the result visible, the
model needs to be further augmented with additional diagram
interchange metadata. This is produced by a hierarchical lay-
out algorithm [17,20], which has been tailored to consider
idioms of the notation and can produce both vertical and
horizontal layouts.

The result can be exported as standard BPMN2.0/XML
files, but also rendered as vector or bitmap images, using the
dagre-d3 library® to display the result.

3 Usability and learnability evaluation
summary

In this section, we summarize the main findings of the usabil-
ity and learnability evaluation presented in [31]. In addition,
complementing those quantitative results, Table 4 highlights
some of the qualitative feedback about the tool which was
spontaneously and anonymously submitted by its users over
the past two years.

8 https://github.com/dagrejs/dagre-d3.

The usability and learnability were evaluated with differ-
ent survey questionnaires, which were answered after users
had an opportunity to practice modeling processes with the
tool. As part of the user populations, we included 21 students
which were not familiar with the BPMN modeling notation
as well as 9 industry experts.

3.1 Model understanding and accuracy

Given a specific, non-trivial process modeling scenario
(Fig. 1), the students participating in the study were able
to obtain correct models (average correctness of 87%) in a
limited time (half completed the task between 30 min and 1
h). The study participants grasped well how to enumerate dif-
ferent process instances by stating them as lists of tasks, how
to distinguish tasks from events as well as how to provide
the correct decision (XOR) gateway labels. While they were
not taught how to draw BPMN constructs in order to model
the process, they found the automatically generated visual
model beneficial for their understanding of the process.

3.2 System usability scale

The results presented in detail in [31] already indicated an
acceptable level of usability (based on the answers to the stan-

@ Springer

https://github.com/dagrejs/dagre-d3

1886

A. lvanchikj et al.

Table 4 Qualitative feedback from anonymous users

Table 4 continued

Feedback

Date

Feedback Date

Ilike the idea of generating BPMN from text. [am
just afraid of having to learn a new semantic from
scratch

Great BPMN Tool.

Great idea, easy to use. Amazing integration of
BPMN objects

Fantastic tool, having daily use of it. Link feature
is impressive

Once Upon A time John O’Connell began
Staffware and invented BPM. it was really chal-
lenging because you had to build workflows in a
textfile. Then Staffware invented iProcess modeler
which set the BPM world in motion. Graphically
building workflows that did real work. Intuitive,
awesome for businesses to build workflows and
IT to implement them. Then everyone saw it
was good and made their own. Then everyone
wanted more capabilities and a standard for mod-
els BPMN and BPEL was born. The modelers
grew too complicated for business owners to easily
build workflows, so it was back to writing specs
and having IT build stuff. Something had to be
done. BPMN-Sketch-Miner came along and fixed
the problem by making it quick and easy to build
a workflow by typing text again, and generating
visual workflows

I really like your program and the whitepaper that
started it. I used it in the past during workshops to
quickly note down a prototype of a process

I found very interesting this software, I would like
to see improvements about efficiency of visualiza-
tion of large projects

I absolutely love the fact that one can actually
come out with a process diagram during a process
discovery or requirement gathering meeting. Also
diagram changes are fairly easy to implement, and
the alignment is completely automated. I believe
if the general population sees this benefit instead
of the necessity to type (which to many may sound
scary in the beginning) I see a great potential for
the Sketch Miner. it really allows us to focus on
the meaning, not the “drawing”

I really liked a lot the tool. It is a great idea to
be able to describe a process only in textual form
and let the tool automatically create the graphi-
cal diagrams. I always found very boring to draw
diagrams and reorganize the elements

I am blind. So for me, the accessibility is the most
important part. Basically, the text input feature is
very useful for me

2020-02-19

2020-03-05
2020-03-11

2020-04-07

2020-09-06

2021-03-09

2021-03-09

2021-03-15

2021-04-27

2021-10-29

@ Springer

I found BPMN Sketch Miner by accident when I 2022-01-18
was trying to find out how to do BPMN model-
ing with either mermaid.js or PlantUML and in a
forum I read someone’s post saying you could try
this. I have been experimenting with it ever since
and will be implementing it in a workshop next
week where I think it will save a lot of time. Thank
you so much! I am also reading your leanpub
business-process-management book that is filling
in a load of gaps in my understanding. When I
found that I could export from the tool directly to
Sparx Enterprise Architect, I thought it was Christ-
mas, again... and it’s only January! I am loving this
tool already, thank you!

I am about to conduct some ongoing workshops to 2022-01-18
help with a business and IT system integration of
2 large companies. I see sketch miner helping to
rapidly help us to discover and explore, to create a
shared language and to find the integrations faster

and more efficiently

Absolutely loving this software, thank you! This 2022-01-22
is going to save innumerable hours on my project!
I am telling colleagues about it... It should be
renamed to ’Gold Mine!” because that’s what I

think I have found

dard SUS survey collected from 30 participants). In Fig. 3,
we show the SUS survey results including the answers of an
additional 20 participants. The combined result confirms the
usability score of 69 as an average of all the answers, with
a 95% confidence interval of 65-73. The histogram of the
distribution of the SUS scores is shown in Fig. 4.

Although in general, higher scores indicate better usabil-
ity, the thresholds used to interpret the score differ in different
studies. In [45], they state that a score below 64 is unac-
ceptable, above 85 is excellent and everything in between is
acceptable.

3.3 Efficiency and learnability

The majority of users agreed with the fact that using the tool
does not require much cognitive effort. Also, most users agree
with the fact that they can type faster than they can model
the process using a graphical editor.

Only two out of 50 respondents of the SUS survey dis-
agreed with the statement that most people would learn to
use this system very quickly. Seven respondents realized that
they would need to learn a lot of things before they could get
going with the system.

Live Process Modeling... 1887

NQ1. I found the system unnecessarily complex

NQ2. I think that I would need the support of a
technical person to be able to use this system

NQ3. I thought there was too much inconsistency

in this system

NQA4. I found the system very cumbersome to use

NQ5. I needed to learn a lot of things before I

could get going with this system

PQ1. I think that I would like to use this system

frequently

PQ2. I found the various functions in this system |

were well integrated

PQ3. I would imagine that most people would

learn to use this system very quickly

PQ4. I felt very confident using the system

PQ5. T thought the system was easy to use

0 10 20 30 40 50

M Strongly disagree [l Disagree [Neutral [] Agree [l Strongly agree

Fig.3 System usability scale (SUS) survey results

40

2
=
z
§oy
2
e
o
z
o
> 6
(0]
2 d
| L
a4 120
ks
L 20 rH
]
2] mlm
s 0O4—r—7—7T—"7T7"7T"T—TT—7T7 7T 777171717710
5omomomomomomomomomomo
SUS Score

Fig.4 SUS score histogram

To help with the on-boarding and engagement of the users
of the tool, in addition to the DSL documentation, we have
also added tutorials, to get the users started, and examples to
show-case different modeling challenges. These were found
to be either very or extremely helpful by the survey respon-
dents.

Cumulative Number of Survey Participants

4 Performance evaluation

The goal of the performance evaluation is to determine
whether the performance of the tool is good enough to sup-
port the live modeling cycle, where the visual BPMN model
is refreshed as users type its textual description.

@ Springer

1888

A. lvanchikj et al.

The live modeling requirement places a clear target on the
tool performance: The visual model should be updated as the
user types its textual description. This is particularly impor-
tant for model sketching tools, whereby an initial model
should be immediately obtained as the user takes notes, for
example, during a modeling workshop. Any delay due to: (1)
users having to click a submit button to refresh the model; (2)
I/0O transfer of the model, for example, to a Cloud backend
for processing and pre-rendering; (3) complex model gen-
eration, transformation, and rendering computations, would
introduce unnecessary friction in the modeling cycle. These
concerns are shared with any textual-to-graphical modeling
tool that—like BPMN Sketch Miner—is meant to be used in
a live modeling context.

In this performance evaluation, we do not only aim at
determining whether the tool meets this requirement, but
also to assess in depth which are the factors affecting its
performance. In particular, we study the contribution of each
architectural element of the tool’s pipeline (Fig. 2) to the
execution time. This result can inform the designers of tools
adopting a similar pipeline architecture about where to expect
to encounter performance problems as well as to identify
critical components for which an investment in performance
optimization would have a positive return.

Other factors include the impact of the input size and input
metamodel on the tool performance. Given the positioning
of the tool as a BPMN sketching tool, we are interested to
study how large and complex are the models that real-world
users work with. Does the tool satisfy the live modeling
requirement for all model sizes created by its users? While
the workload characterization results we present are specific
to the BPMN Sketch Miner domain-specific language, the
same analysis would need to be performed for similar tools.

More in detail, our benchmark aims to answer the follow-
ing specific research questions:

RQI. Is the performance of the tool sufficient to produce
visual models as the user is typing their textual
description?

RQ2. Is there a bottleneck within the model generation
pipeline?

RQ3. How well does the tool scale to produce larger models?

RQ4. To which extent does the tool performance depend on
specific language constructs?

Answering RQ1 requires measuring the tool’s end-to-end
performance but also obtaining a benchmark workload of
models which are representative of real-world usage condi-
tions. To detect bottlenecks (RQ2) in the pipeline, we profiled
the execution so that we can identify which stage could
require future performance optimization efforts. To observe
the scalability of the tool (RQ3), we need first to determine
how to measure the size of the textual input as well as the

@ Springer

size of the resulting visual model. Regarding RQ4, we are
interested to study the performance impact of the interplay
between process mining and modeling for different BPMN
constructs.

4.1 Benchmark workload

Given the large variety of process models that can be rep-
resented, we selected a corpus of 1350 models which were
exported by 396 different users of BPMN Sketch Miner dur-
ing the year 2020. We expect users to export models at the end
of their modeling session, so we can assume that the mod-
els have reached a good level of completeness. Also since
the models are produced by end users, they should represent
typical usage scenarios of the modeling tool in real-world
conditions.

The criteria for including the models in the benchmark
workload are:

— Completeness: The models were explicitly exported by
the users at the end of their modeling session. We dis-
carded models exported as part of tutorial sessions or
short-lived sessions (less than 15 min).

— Coverage: The models are unique w.r.t. their input/output
size metrics to sample the workload size parameter space
as much as possible.

To characterize the models and how they make use of the
textual domain-specific language, we present specific metrics
counting how many lines and which types of lines are present
(Fig. 5).

The size of the models is measured both in terms of their
textual description (input to the pipeline) and in terms of the
size of the visual model (output of the pipeline). In addition
to the total number of lines (up to 200) shown in Fig. 5, we
count how many sequences are present in the text (median
of 5), how many lines are there in each sequence (sequence
length—median of 4), and how many of those sequences are
fragments (Fig. 6 right). To measure the size of the output, we
first count how many nodes (up to 160) and edges (up to 164)
are present in the resulting visual model (Fig. 6 left). We fur-
ther classify the visual constructs found in the output models
in Fig. 7 showing the number of sequence flow, conditional
flow, message flow, data flow, and annotation associations, as
well as the tasks, events, gateways, data objects, and annota-
tions. Figure 8 further breaks down the events and gateways
as they are inferred by the process mining algorithm.

To preserve users’ privacy, the exported models have been
analyzed on the users’ own devices to measure their size
according to the previous metrics. This information was later
used to automatically synthesize the benchmark workload
models with identical sizes but anonymized element labels
[58].

Live Process Modeling...

1889

T T T T T T T T T1 = 92
7 200 [o _ &
E g
- =
Gy]
o150 T : 15 &
2 %
g 5
> -
Z 100 - €1 115
o S
& el
2 i los &
2 50 |- = 58
e | lalol LTl [IL]T
2] +~
2 o orollds 1 21 Jo 3
I O Y Y Y [O Iy O O R =
mE 2S5 E 8 E§R R mE 2 %2 Z E & E § A
O o ® E + > TG @) =1} @ E L >
m g0 5 2 % £ @ g 0 ¢ 2 %
O &m0 =g g8 S £ = g O = ¢
1 S . < @ X {‘3‘3 Z. < @
< <
Roles Tasks Events XOR Labels Data Fragments
Minimum 0 0 0 0 0 0
Median 3 15 3 0 0 0
Maximum 43 150 69 21 44 45
AND Gateway Comments Annotations Empty Lines Total Lines
Minimum 0 0 0 0 1
Median 0 0 0 4 28
Maximum 7 45 28 39 195

Fig.5 Absolute and relative textual DSL construct usage

4.2 Performance metric

The performance is measured as the duration of one exe-
cution of the rendering pipeline. Within the modeling tool,
this is triggered as soon as the user stops typing. Thus, we
are interested to measure how long the user needs to wait
before the visual model is refreshed to display the visualiza-
tion obtained from the textual description.

We instrumented the model generation pipeline to record
time measurements with the high-resolution timer provided
by the performance . now standard JavaScript API.

4.3 Testbed

The performance measurements have been obtained by run-
ning BPMN Sketch Miner version 1.17.4 on the Chrome
Web browser version 88.0.4324.146 deployed ona 2018 Mac
Book Pro (2.2 GHz Intel Core i7) running macOS 10.14.6.
It is out of the scope of this performance evaluation to
use BPMN Sketch Miner as a benchmark to compare the
performance of different Web browsers running on differ-
ent OS/hardware configurations. Since BPMN Sketch Miner

runs entirely on the Web browser, the performance experi-
enced by the end users will clearly depend on their local
runtime environment, but it will not be affected by their net-
work conditions.

4.4 Performance results
4.4.1 Total execution time

Each model of the benchmark can be rendered in less than
513 ms, as shown in the histogram of Fig. 9. The median total
execution time is 62.219 ms, and the mode is between 10 and
15 ms. On average, users editing the textual description of
the models collected in the benchmark had to wait 77.255
ms before the corresponding visual representation was dis-
played.

4.4.2 Pipeline stages execution time
While running the benchmark, we have profiled the execution

time of each pipeline stage. The results shown in Figs. 10
and 11 clearly indicate that the most time-consuming stage

@ Springer

1890 A. lvanchikj et al.
Fig.6 Text input and visual T
output model size 80 |- I .
£ 150 | .
)
g
60 [~ n =
62}
. E@ 100 |- :
z 40 L - _%0
O A
3
20 N)
)
2
= = z |]
| | | | |
a % [SaR o e
E E 3 g z &
o0 (]
g g & =
] &
Input Text Size Output Model Size
Minimum 1 0 1 Minimum 0 0
Median 5 1 4 Median 25 23
Maximum 36 24 79 Maximum 160 164

is the one running the automatic layout algorithm to position
the model elements on the visual diagram.

As areference, the median layout time is 56.864 ms, while
3.269 ms is the median time spent by the process mining algo-
rithm. The other stages are faster with the following median
times: 1.240 ms (parser), 1.929 (model transformation), and
3.140 ms (renderer).

The average execution times for each stage are: 1.755 ms
(parser), 6.845 ms (mining algorithm), 1.715 ms (transfor-
mation), 64.151 ms (layout), and 2.787 ms (renderer).

4.4.3 Scalability

To study how the execution time grows with the size of the
input text and the output diagram, we observe the total execu-
tion time as a function of different size metrics: considering
the input size: number of lines of the input textual descrip-
tion (Fig. 12), and number of sequences found in the textual
description (Fig. 13); considering the output size: the num-
ber of nodes and edges of the BPMN diagram (Fig. 14), the
number of tasks (Fig. 15), swimlanes (Fig. 16), data objects
(Fig. 17), events (Fig. 18), gateways (Fig. 19), and different
types of flow edges (Fig. 20).

@ Springer

For every value of the size metric, we display in “Appendix”
a boxplot illustrating the time measurement distribution.

Given the user-generated input, most samples are obtained
with low size values. For some metrics, we include a linear
regression model attempting to interpolate the measurements
across the entire range of values. We also use it to assess
whether the execution time can be considered linearly depen-
dent on the input and output size.

4.4.4 Performance impact of BPMN constructs

To study the impact of the mix of modeling constructs found
in a model on the pipeline execution time, we provide lin-
ear regression models for most of the previous charts. We
have also fitted a multiple linear regression using a set of
independent output size metrics (Table. 5).

While all independent variables have a significant impact
on the execution time, the strongest positive contribution is
provided by the number of swimlanes, followed by the num-
ber of edges and gateways. The presence of other types of
nodes (tasks, events, data objects, and annotations) appears
to reduce the execution time.

Live Process Modeling...

1891

150
. —
=
[}
:
/100 |- =
g
IS
~
)
5
a
= 50 |- =
[
)
e
N B == L
| | | | |
4 £ 4 2 ey
g 3 % & 3
- N S B
= X 3 z
& F 2
o
0
Edge Types
Minimum 1 1 0 1 1
Median 19 5 0 5 3

Maximum 137 14 26 44 17

Fig.7 Output model: edge and node types

4.5 Discussion
4.5.1 RQ1. Is the performance sufficient for live modeling?

In the worst case, the delay does not grow above 513 ms. For
most models, the time stays under 50ms. This is fast enough
[4,49].

This result confirms our design decision to implement
BPMN Sketch Miner to run entirely in a Web browser to avoid
the server-side rendering round trip delay of tools such as
PlantText, which require users to explicitly submit their tex-
tual description to be rendered. With BPMN Sketch Miner,
by the time users have stopped typing and are considering
whether the visual diagram should be refreshed, the result of
the rendering pipeline is already displayed.

4.5.2 RQ2. Is there a bottleneck in the pipeline?

Yes, the automatic layout algorithm is the most expensive
stage.

While generating the model using a process mining
algorithm simplifies the modeling task of users—who, for
example, do not have to worry about creating the correct

80

I

|
)
@n)

I

|
N
o

20

Number of Diagram Elements

i
[—

},
},
|
|

Tasks |~
Events [~
Gateways [
Data Objects |~
Annotations |~

Node Types
1 0 0 1

9 7 3 2 3
73 68 23 23 17

—

control flow graph structure or explicitly selecting among
start, intermediate, or end events—it also does not appear
to introduce significant overhead in the process generation
pipeline, especially when compared with the automatic lay-
out, which also helps to reduce the tedious manual drag and
drop effort required by many manual visual modeling tools.

The pipeline profiling results help us to focus future opti-
mization efforts on the layout stage, which will be critical to
support additional language features such as sub-processes.

4.5.3 RQ3. How well does it scale to larger models?

As shown by the results collected in Figs. 12, 13, 14, 15, 16,
17, 18, 19 and 20, according to many different size metrics,
the pipeline execution time appears to scale linearly with the
size of the input and the output. Within the operating range of
model sizes covered by the benchmark, the tool performance
remains within acceptable bounds.

The original motivation for BPMN Sketch Miner was to
rapidly support sketching activities of simple process mod-
els. Can a model with hundreds of tasks still be considered a
sketch? Actual usage scenarios with such large models may
require us to reconsider some of the basic assumptions behind

@ Springer

1892

A. lvanchikj et al.

40

30 -

Number of Diagram Elements
)
=)
T
\

10 |- =
0 [,_I_| I .
| | |
> 2 g
< < |
g g T
I
& = 4
[}
g
Events
Minimum 0 0 0
Median 1 1 2
Maximum 21 40 29

Fig.8 Output model: event and gateway types

the tool’s user interface design and its live editing cycle,
which was not originally intended to be used with textual
descriptions beyond one hundred lines.

As users venture beyond the limits of the tool operating
range, it will become more difficult to maintain the same
live modeling experience with larger and larger models. The
slowest performance observed of 513ms is already close to
what some users may have perceived as a noticeable lag [50].
One simple solution would be to add a refresh button and give
manual control to the user about when the pipeline should be
relaunched. Another more technically challenging approach
would be to introduce some dynamic algorithms which can
incrementally update the model based on detecting which
changes have been applied to the textual description [23].

4.5.4 RQ4. What is the impact of specific language
constructs on performance?

The multiple linear regression model of Table 5 highlights
the swimlanes as the construct with the most prominent
impact on the execution time. This can be explained by how
swimlanes constrain the layout algorithm when placing the
diagram elements and by the need to reshuffle swimlanes into

@ Springer

20

T
\
—_
o
Number of Diagram Elements

- -0
| | |
2 S S
& @ &
4 4 4
9] Q]
3 3 3
U O 0
o a %
o} 4 0
I < LE
Gateways
0 0 0
2 0 0
20 7 4

separate pools in case of message flow exchanges between
them.

The negative weights of some constructs can be explained
by the fact that the model obtained from the process mining
algorithm is always a connected graph. Thus, for every model
element (such as tasks or events, or data objects) there is
always at least one edge present in the diagram. In absolute
terms, Edges have a cost that is higher than all of the other
types of nodes.

4.6 Threats to validity

The models exported by users have a median size of 25 nodes
and 23 edges and have been described with 28 lines of text
(median). Compared to the largest modes in the workload
having up to 160 nodes and 164 edges (described using up to
195 lines of text), the distribution is skewed toward smaller
models. The linear scalability claim is valid only within the
given workload range, which reflects the current operating
range of the tool.

Given the fully automatic, privacy-preserving data collec-
tion process we followed to obtain the workload models, it
is not possible to assess whether the models were exported

Live Process Modeling...

1893

N 3
2 150 | B
g {1,000 =
z 5
S 100 - 3
: £
E |s00 2
2 50| i
2
D E
=]
0 FrrrrrTrTr T T 0 E
CIOINOINOINOIVOVOVOI OO =)
AN FHDDOOSNDORDGD O
Fig.9 Total pipeline execution time histogram
I
- B]
\5/ 400
o) -
=
&
g
£ 200 - .
=
O JE—
]
"
£a)
0 I ———— |) [S E— _l_ —
| | |
DSL Process Model Automatic Renderer Total
Parser Mining Transformation Layout
Algorithm
Pipeline Stage
Minimum 0.274 0.315 0.585 2.53 0.780 7.699
Median 1.592 3.72 1.63 52.222 2.564 61.645
Maximum 6.109 146.579 5.334 339.355 17.485 513.105

Fig. 10 Execution time profile of the model generation and transformation pipeline

by occasional users who just tested the tool as opposed to
models representing actual purposeful usage. The filtering
criteria we have applied to select the models (e.g., discard-
ing models exported during tutorial or short-lived sessions)
are intended to mitigate this threat.

As with every benchmark, the actual performance ulti-
mately experienced by the users will depend on their own
Web browser, OS, and hardware stack configuration.

5 Related work

5.1 Empirical studies comparing graphical versus
textual representations

Researchers have been long discussing whether textual or
graphical model representations are better [19,23,26,34,46,
48,54]. Many empirical studies comparing graphical ver-
sus textual representations have been carried out in the
past concerning, e.g., COBOL data structure documentation
[38], requirement models [40,57], UML model maintenance

@ Springer

A. lvanchikj et al.

1894

S[OPOJAl JO IoquuUny] SAIYR[NWIN,) S[OPOJA JO ISQUINN] SATJR[NUIN,)

S 3
= o
< =) < S
— 10 o — 10 =)
T T T T
= - 67 = v
= - e = |- 86
= Ly = |- 96
= - o7 B - ve6
= o B - 26
= - vy B - 06
] L e% — |- 88
] L 2% — |- o8
— - 17 - AN
§ Co B
= - 6¢ N —
| - 8¢ — - QL ~—
— - L€ B \WM o}
= - ot n B
_ g @ | - ¢l Tm
§ e & 5
1 - =}
] 26 o — 99 3
. Cle B o B
] - o¢ —]
] 6z EH o9
. -8z o | se %
n 29 | -y A
N 9% 5 - zg
— - gz ww | oe g
N e g e =
N g -or %
N - e | - 9
N e ey B0
- -0z @ =
| 61 © | - 0r <
= 88 o
] 81 < | o X
- AN - ve .=
. For o e 2
n I~ = - o€
] 2 o 2
n - €Tl | -9z @
n eI | L)
. Lot BT
N - = - oz
= -6 = 8T A
] . u 9T
] - . 7T
] o - 4
S - 0T
v - 8
€ - 9
4 - v
T = 4
0 = 0

| | | |
=] =]) (e =] o
=] =] (=] =]

A x S &
S[OPOIA[JO IaqUUTIN S[9POJA JO IaquuInN

!
T
g
Model Transformation Execution Time (ms)

S[OPOJAl JO IoquuInN SAlje[NWN,)

11,000
1500

1,000 [
500 |-

S[OPOIA JO IaqUUTLN]

S[OPOJAl JO Ioquuny] SAIje[NWIN,)

{1,000
{500

Automatic Layout Execution Time (ms)

| | |
] = o = =]
=] 0 o 10
N — —

S[OPOIAl JO IoquuInN

\
T
<
[a}

Renderer Execution Time (ms)

|
OHNMIFIOMNW0D

STOPOJN JO IoquIN SAIR[NIN))

=)
S
<
—

T

-1 500

, ,
= = =
=4 =t

< x

S[9POIAl JO IaquunN

Fig. 11 Execution time histograms for each pipeline stage

pringer

A

Live Process Modeling... 1895
Fig. 12 Model generation time
versus input size: number of
lines T = 1.75491X + 11.62196, R2 = 0.8494
Z 400
o
£
=
o0
=
'% 200
°
=
Q
~
0
] ° S E 3 ES S S S 3 2 S S
‘ ~ — — — ~ 2] jall
Number of Lines
Fig. 13 Model generation time
versus input size: number of =
lines and sequences T = 10.2569X + 19.9536, R2 = 0.5654
2 400
e
E
&=
o0
=
‘5 200
]
<
Q
~
0

[34,46], or declarative [24] and imperative [6] business pro-
cess models.

Sharafi et al. [57] performed an eye-tracking experiment
with 28 participants to study their efficiency and accuracy
with requirement comprehension tasks. While no impact on
accuracy was observed, the subjects were significantly slower
when working with the TROPOS graphical representation.
In the same domain of requirement modeling and analysis,
a recent controlled experiment with 38 student participants
compared the textual and graphical versions of iStar [40]
focusing on modeling tasks, with no significant differences
on the resulting model size and accuracy when using the ver-
sions of iStar. However, it was found that “participants prefer
to model graphically.” A similar result was obtained by Melia
et al. [46] with a pilot study involving 86 students at the
University of Alicante comparing UML versus a textual OO
language syntax. The authors highlighted the main benefits
of each notation type and performed an empirical compar-
ison of their usability. They analyzed the impact the two
modalities have on the efficiency, effectiveness, and satisfac-
tion of novice programmers while performing maintenance

10

jla} o
— 3]

25
30
35
40

Number of Sequences

tasks such as model understanding, error detection and cor-
rection. Their quasi-experiment using the OOH4RIA tool has
shown that the novice programmers discovered more errors
and were more efficient in fixing them when using the textual
notation, but expressed preference for the graphical notation.

Jolak et al. [34] conducted an experiment with 240 soft-
ware students from four different universities to study the
impact of the type of representation (textual vs. graphi-
cal) on user’s ability to explain, understand, recall, and
actively communicate knowledge. They used UML class
diagrams for the graphical representation. They discovered
that the graphical representation has a positive effect on the
explaining and understanding ability, but with no statisti-
cal significance, while a statistically significant advantage
of graphical representation over textual representation is
noticed for the recall ability. Also, a statistically significant
effect was noticed regarding the ability to actively commu-
nicate knowledge. Namely, it has been observed that the
graphical representation fosters more active discussion than
the textual representation and has a positive effect on the

@ Springer

1896 A. lvanchikj et al.

Fig. 14 Model generation time
versus output size: number of
nodes and edges
T = 2.93172X — 3.93885, R2 = 0.862
E 400
Y
E
H
El
= 200
3
=
Q
~
0
(=] o =] (=3 o o [=} o [=1
o ¥ © © = b 3 b
Number of Nodes
T = 2.87656X + 1.83384, R2 = 0.8862
'g 400
Y
£
&=
2
s 200
<
=
Q
/~
0
°] S 3 @ g] S 3 2
Number of Edges
Fig. 15 Model generation time
versus output size: number of
tasks T = 4.20426X + 21.75625 -
Z 400
Pl
E
H
o0
g
‘5200
°
=i
Q
~
0

40

[}
©

80
100

Number of Tasks

@ Springer

Live Process Modeling...

1897

Fig. 16 Model generation time
versus output size: number of
swimlanes T =26.0544X + 13.7021
. R? = 0.5214
é 400 |~ .
Y
=
=
)
=
'g 200 .
T
=)
3
"
O [e —]
\ \ \ \ \ \ \
o [a] <t © 0 E S j
Number of Swimlanes
Fig. 17 Model generation time
versus output size: number of
data objects T T =1.9565X + 76.5613
— R? = 0.005899
é) 400 |- .
°
£
=
)
=)
'g 200 |~ .
T
=)
3
~ =
—_—
0 | .
\ \ \ \ \ \

creative conflict discussions while requiring less conversa-
tion management effort.

Closer to the domain of our work, Haisjack and Zugal
[24] investigated the differences between graphical and tex-
tual declarative process models. The main result obtained
with a sense-making study involving 9 subjects was that “the
graphical representation is advantageous in terms of errors,
duration, and mental effort.” Rodrigues et al. [6] described
an experiment to compare the clarity of work instructions
represented as text or as BPMN process models, with no dif-
ferences in understandability only for non-experts. Instead,
increased process understanding was found for experienced
users using BPMN models.

5.2 From text to visual process models

The previous studies have compared models presented alter-
natively with textual versus graphical representations and
evaluated which modality was found easier to understand by

Number of Data Objects

the subjects. In our work, we see the two representations as
complementary. In particular, we advocate writing the con-
tent of the model using text and simultaneously reading the
content of the model from the corresponding visual notation.
In[30], we have introduced the idea of obtaining BPMN mod-
els by means of mining traces described using a textual DSL.
We presented an environment for analysts and process partic-
ipants where they can rapidly sketch business process models
as they discuss them using natural language during structured
interviews. The approach supported only a very small num-
ber of BPMN constructs (start/end event, XOR gateway, task,
and sequence flow BPMN constructs) and lacked the mod-
eling annotations necessary to distinguish different types of
tasks and events, pools, message flow, etc. The tool presented
in [31], as well as in this article, is still based on process min-
ing [65], and as such provides access to the core constructs of
the BPMN notation without requiring an explicit description
of the process control flow, e.g., when using the PlantUML
textual syntax for activity diagrams. On the other hand, it

@ Springer

1898

A. lvanchikj et al.

Fig. 18 Model generation time
versus output size: number of
events

@ Springer

Rendering Time (ms)

T = 4.7709X + 31.9991, R? = 0.4955

Rendering Time (ms)

o [=) [=] (=] (=] (=3 [=}
— 3] 2] <+ 0 © ~
Number of Events
© 0 (=] [a} < © o0 (=] N
— — — — — o~ [}

Number of Start Events

Rendering Time (ms)

[\)
S
(=)

Rendering Time (ms)

o [} j=] n (=} 0 (=}
— — o~ [a} 2] [<+
Number of Intermediate Events
==
=
o S o I o
— - [} [a} o0

Number of End Events

Live Process Modeling... 1899
Fig. 19 Model generation time
versus output size: number of -
gateways
Z 400 R
g =
& 5
60
2 200
= - N
o}
T
- 0
~
- T =10.9681X 4 34.4311
0f R? = 0.5948 8
| | | | | |
° ° a A]]
Number of Gateways
T T T
Z 400 | a {400 Z
° <
£ £
= =
o0 o0
£ 200 200 =
[- [- —
2 = = 2
=) =)
Q Q
o % B IE_|E| a1
0 n - 0
| | | | | | | |
o [a] A © 00 (=] [a Al
Number of AND Gateways Number of Event Gateways
T T T T T T T T T T T
Z 400 -
2 T B=
=
o0
=)
S 200 %I é :
HO %I
=)
é —_— _—
O []

o N < © 0 3} s
— —

10

Number of XOR Gateways

16

18

20
22

@ Springer

1900

A. lvanchikj et al.

Fig.20 Model generation time
versus output size: edge types

@ Springer

Rendering Time (ms) Rendering Time (ms) Rendering Time (ms) Rendering Time (ms)

Rendering Time (ms)

400

200

400

200

400

200

400

200

400

20
0
60

o
EY

100
120
140

Sequence Flow Edges

==
[=} 2} A © 0 S : E
Conditional Flow Edges
= B
@ =
@é -
Lbsdgre=s }
© S 3]]
Number of Message Flow Edges
=
) -
? 2]]] 2 3 K S

Number of Data Flow Edges

2] ~ © Y o 2]
= —

14
16
18

Number of Annotation Edges

Live Process Modeling...

1901

Table 5 Multiple linear regression model

Dependent variable

Time
Number of Swimlanes 9.426™**
(0.347)
Number of Edges 3.235%%*
(0.124)
Number of Gateways 1.220%**
(0.229)
Number of Annotations —0.739%**
(0.255)
Number of Tasks — 1.362%**
(0.116)
Number of Events — 1.679%**
(0.140)
Number of Data Objects —2.439%#*
(0.286)
Constant —1.102
(0.745)
Observations 1,350
R? 0.944
Adjusted R? 0.943

Residual Std. Error
F Statistic

13.911 (df = 1342)
3211.260%* (df = 7; 1342)

*p < 0.1;%p < 0.05; **p < 0.01

provides a much more expressive DSL compared to the one
we presented in [30] by combining the process mining with
textual modeling.

Using textual DSL for process modeling is not a new
idea. Starting from the same motivations as ours, the authors
of [29] proposed a textual DSL for describing S-BPM [14]
processes. However, unlike the BPMN Sketch Miner’s tex-
tual DSL, the S-BPM is designed for explicitly declaring the
whole model’s structure textually. T-Square [55] is another
declarative textual DSL for rapid processes description by
specifying the tasks and the branching conditions. This DSL
is incorporated in NOVA [43] which is an Eclipse-based edi-
tor which enables modeling workflows graphically based on
the Compensable Workflow Modeling Language (CWML).
While the goal of our textual DSL is generating a visual
BPMN compliant artifact that can be exported in different
formats, including the BPMN XML format, the goal of T-
Square is to generate executable workflows from textual
specifications, by means of a model transformation using
Xtend.

BPMN Sketch Miner’s goal of speeding up the initial
model construction phase is also shared with the Rapid Busi-
ness Process Discovery (R-BPD) tool [21], whose solution
combines both text-to-model and model-to-model transfor-

mations, which can extract models from any textual resource
discovered in an enterprise repository and also foster the
reuse of existing models. However, none of the above-stated
textual DSLs targets BPMN as a modeling language. To the
best of our knowledge, the only existing work on textual
modeling for BPMN is PlantBPMN [16], which is a textual
DSL created using the Xtext [10] framework, supported by an
Eclipse-based editing tool. A model transformation between
the metamodels created by the BPMN textual DSL and the
BPMN XML Schema is implemented. The DSL presented
in this article is more abstract compared to PlantBPMN,
as BPMN Sketch Miner uses process mining to infer the
presence of many constructs (e.g., exclusive vs. event-based
gateways, pools vs. swimlanes, start vs. intermediate vs. end
events, etc.—see Table 1 for details) which need to be explic-
itly detailed in PlantBPMN.

While our text to visual model transformation is motivated
by streamlining the process modeling workshop feedback
cycle, there are many tools targeting the reconstruction of
models starting from preexisting documentation written in
natural language [2]. Concerning business process mod-
els, text highlighting [1] augmented with natural language
processing (NLP) [41] has been proposed as a technique
to guide the transition from informal text-based process
descriptions to formal declarative process models. Honkisz
et al. [28] proposed to use an intermediate spreadsheet-like
tabular representation between the raw input text and the final
BPMN model. Ferreiraetal. [13] proposed a semi-automatic,
rule-based approach to identify process elements in natural
language texts featuring 33 mapping rules. Friedrich et al.
[18] presented a work which aimed at generating BPMN
models using a set of natural language processing (NLP)
techniques. Their proposed technique was evaluated using 47
texts in natural language. The tool could generate accurate
process models for 77% of the texts. This approach has been
successfully applied to reconstruct processes within specific
domains (e.g., archeological excavation methods [9]). More
recently, similar work by van der Aa et al. [61] shows how
to obtain declarative process models from natural language.
However, our approach supports business analysts during
requirements gathering interviews where the process is being
described for the first time or its initial sketch needs to
be agreed upon with process participants, or when written
process documentation is not available, which is the main
prerequisite for using the above-discussed natural language
processing approaches. The DSL designed for the BPMN
Sketch Miner is meant to be close, as much as possible, to
natural language, in order to ease the user’s task of memoriz-
ing the concrete syntax of the language. Based on the textual
model that the user introduces, the visual BPMN model is
automatically generated in real time.

The goal behind the liveness [59] of the BPMN Sketch
Miner is to minimize the latency between a modeling action

@ Springer

1902

A. lvanchikj et al.

applied to the textual description of the process and seeing
its effect on the resulting diagram. Such need of “instant
feedback and shared understanding” of a business process
between the business analyst and the domain experts has
also been recognized by Grosskopf et al. [42]. Contrary to
our approach, they use tangible BPMN elements (t. BPM) to
be moved around by domain experts while physically build-
ing the visual business process model on a table. They have
found that t. BPM allows domain experts to identify the need
for model corrections faster, due to the gradual building up
of the visual model, and it motivates them to think more
about their process. Dixit et al. [7] take a different approach
to include the domain expert in the process discovery by
providing suggestions for the next possible constructs to be
added to the model based on the probabilities discovered with
process mining algorithms. This approach is not applicable
for processes which lack event logs.

5.3 Model transformation performance
benchmarking

Performance benchmarks are also present within the MDE
community, where model transformations play a critical role.
In [64], the authors evaluated and compared the performance
of three of the most used transformation languages in MDE:
ATL, QVT Operational Mapping, and QVT Relations. The
experiments compared the execution duration of two exam-
ples of model transformations implemented using each of
these languages. The goal was to identify all the factors
that influence the performance of the transformation engines
under test, in order to provide to their users the possibility to
reach higher performances by tuning these parameters. While
the authors of [64] proposed a performance evaluation tool
specific for ATL and QVT, MONDO-SAM [32] provides an
extensible MDE benchmarking framework, to measure the
scalability of different tools against specific complexity met-
rics.

Similar to our performance evaluation approach, both
[64] and [32] frameworks take as inputs real-world model
instances. He, Zhang, Hu, Ma, and Shao [25] instead propose
an algorithm for the efficient random generation of correct
models, which can be used as benchmark workload when
user-provided models are not available.

5.4 Transforming process models back into natural
language

A survey on the challenges and opportunities of applying
NLP in BPM has been presented at the computational linguis-
tics conference [60]. The authors also covered the opposite
practice of text generation from BPMN models. Such visual-
to-text transformation can be motivated by the finding that
graphical notations require formal training to be correctly

@ Springer

understood [54], while textual representations using natural
language convey their meaning to both professionals with
BPM background as well as to business stakeholders from a
wider business setting [52].

Leopold, Mendling and Polyvyanyy [39] developed an
automatic approach for generating natural language texts
from business process models “combining natural language
analysis, graph decomposition techniques and a linguistic
framework for flexible text generation.” Process-To-Text
[15] instead is a framework for the quantitative description
of processes in natural language, which can enrich the natu-
ral language description with quantitative information about
past process execution extracted by mining event logs.

6 Conclusion

Most of the existing BPMN modeling editors are graphical
editors where users are required to drag, drop, and connect
visual constructs. This frequently results in BPMN models
being generated by the business analyst as a second step after
a requirements elicitation workshop, which contributes to a
lengthier feedback cycle as a subsequent meeting is needed
to discuss whether the generated model reflects accurately
what has been discussed with the stakeholders during the
workshop. To overcome this, we have developed the BPMN
Sketch Miner to support live process modeling using a con-
strained natural language textual input which mimics notes
taking during a requirements elicitation meeting. This arti-
cle presents the design and evaluation of the BPMN Sketch
Miner in terms of its usability, learnability, expressiveness,
and performance, extending the previous MODELS 2020
publication [31].

The design of the textual BPMN implemented in the tool
attempts to combine together modeling (prescribing what the
process does) and mining (describing what the process does)
by using constrained natural language. The results from our
evaluation show that the trade-off between expressiveness
and usability is well balanced. The survey respondents mostly
found the BPMN expressiveness as sufficient, as also indi-
cated by the mix of constructs present in the workload model
collection. Regarding the performance evaluation, the tool
complies with the rapid sketching and live modeling require-
ment we set in its design as, across the entire benchmark,
the rendering time remains below 513ms. More in detail,
comparing the execution times of the different phases of the
model generation and transformation pipeline revealed that
the automatic layout is the most time-consuming stage. We
have also calculated, for each BPMN construct, the differ-
ent correlations between the execution time and the number
of times a specific construct is found in the BPMN model.
Overall, the models’ rendering time is mostly impacted by

Live Process Modeling...

1903

the number of swimlanes and the number of edges in the
model.

All in all, we demonstrate the feasibility of using a Web
browser as a live BPMN modeling environment featuring
a low-latency text-to-visual model transformation. The pro-
posed pipeline architecture is generally applicable to similar
tools, which feature as part of their input both instance exam-
ples from which the model should be inferred and the explicit
description of the model. The automatic layout may turn out
to be a bottleneck in other text-to-visual tools, whose input
defines the model element graph topology but not exactly
where to place the visual elements on the diagram.

7 Future work

As future work, we plan to continue extending the set of
BPMN constructs supported by the textual DSL as prioritized
by the feedback of our user community. As this may put
additional pressure on the automatic layout algorithm, we
may need to introduce a dynamic [27] variant of the pipeline,
which—for some frequent types of changes applied to the
input—may produce incremental model editing operations to
be locally applied to the output, thus avoiding to refresh the
entire model after every keystroke. This will start to pave the
way toward supporting two-way, text-to-visual and visual-
to-text, synchronization.

Regarding scalability and impact of language constructs,
we found mostly linear dependencies of run time w.r.t. com-
plexity measures of the input. We do not necessarily expect
that the process mining and layout algorithms exhibit a sim-
ilar behavior for larger workloads. As the tool is being used
more widely, it may happen that users will not only sketch
small process models but attempt to create yet bigger models.
We plan to extend this study with also bigger examples, per-
haps created artificially with certain characteristics, to assess
whether the linear-time complexity result also holds for larger
models. This will be key to determine where the threshold
lies for live-modeling to stop being an option. We are also
planning to introduce in the next release of the tool the option
for users to control the automatic live text-to-graphical syn-
chronization. This way, users themselves can determine on a
individual basis whether the delay is acceptable or not, both
depending on their local hardware capacity and the size and
complexity of their models.

While this article focused on the performance of the tool
itself, more work is needed to assess the performance and
productivity of its users. For example, we are interested to
recruit users interested in participating in empirical studies
to observe: (1) how long it takes to obtain the first version of
a model which can be subjected to a round of feedback with
the stakeholders; (2) how easy is it to quickly apply sugges-
tions for improvements while refining the models as opposed

to traditional visual environments; (3) what is the end-user
perceived performance of the tool within their usual model-
ing activities; and (4) what difficulties may arise when using
the tool with larger and more complex models as opposed to
initial model sketches. We are also planning to provide col-
laborative editing capabilities of the text editor which could
further help increasing the efficiency of process elicitation
workshops or interviews.

Acknowledgements The authors would like to thank Mathias Weske,
the BPM class of 2020, the BPMN Sketch Miner user community, and
the MODELS2020 and SoSyM reviewers for their invaluable feedback.
The work is partially funded by the SNF, with the API-ACE Project No.
184692.

Funding Open access funding provided by Universita della Svizzera
italiana.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix:
model size

model generation time versus

In this appendix, we collected the plots showing the relation-
ship between the total time required to obtain a model and the
size of the model in terms of many different metrics. They
provide evidence for both RQ3 (scalability) and RQ4 (impact
of specific BPMN constructs) as presented in Sect. 4.4.

References

1. Abbad Andaloussi, A., Buch-Lorentsen, J., Lépez, H.A., Slaats, T.,
Weber, B.: Exploring the modeling of declarative processes using
a hybrid approach. In: Proceedings of Conceptual Modeling (ER
2019), pp. 162-170. Springer (2019)

2. Ackermann, L., Volz, B.: Model [nl] generation: natural language
model extraction. In: Proceedings of the 2013 ACM Workshop on
Domain-Specific Modeling, pp. 45-50 (2013)

3. Brambilla, M., Cabot, J., Comai, S.: Automatic generation of
workflow-extended domain models. In: Proceedings of the 10th
International Conference on Model Driven Engineering Languages
and Systems, MODELS’07, pp. 375-389. Springer, Berlin (2007)

4. Conn, A.P.: Time affordances: the time factor in diagnostic usability
heuristics. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 186—193 (1995)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1904

A. lvanchikj et al.

10.

11.

12.

13.

14.

15.

17.

19.

20.

21.

Damij, N.: Business process modelling using diagrammatic and
tabular techniques. Bus. Process Manag. J. 13(1), 70-90 (2007)
De A. Rodrigues, R., De O. Barros, M., Revoredo, K., Azevedo,
L.G., Leopold, H.: An experiment on process model understand-
ability using textual work instructions and bpmn models. In:
Proceedings of the 29th Brazilian Symposium on Software Engi-
neering, pp. 41-50 (2015). https://doi.org/10.1109/SBES.2015.12
Dixit, P., Verbeek, H., Buijs, J., van der Aalst, W.: Interactive data-
driven process model construction. In: International Conference on
Conceptual Modeling, pp. 251-265. Springer (2018)

Doéweling, S., Tahiri, T., Schmidt, B., Nolte, A., Khalilbeigi, M.:
Collaborative business process modeling on interactive tabletops.
In: ECIS (2013)

Epure, E.V,, etal.: Automatic process model discovery from textual
methodologies. In: Proceedings of the 9th International Conference
on Research Challenges in Information Science (RCIS), pp. 19-30.
IEEE (2015). https://doi.org/10.1109/RCIS.2015.7128860
Eysholdt, M., Behrens, H.: Xtext: implement your language faster
than the quick and dirty way. In: Proceedings of the ACM
International Conference Companion on Object Oriented Program-
ming Systems Languages and Applications Companion, OOPSLA
’10, pp. 307-309. ACM (2010). https://doi.org/10.1145/1869542.
1869625

Fahland, D., Weidlich, M.: Scenario-based process modeling with
greta. In: Rosa, M.L. (ed.) Proceedings of the Business Process
Management 2010 Demonstration Track, CEUR Workshop Pro-
ceedings, vol. 615, pp. 52-57. CEUR-WS.org (2010). http://ceur-
ws.org/Vol-615/paper16.pdf

Ferme, V., Lenhard, J., Harrer, S., Geiger, M., Pautasso, C.: Work-
flow management systems benchmarking: unfulfilled expectations
and lessons learned. In: Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017—Companion Volume, pp. 379-381.
IEEE Computer Society (2017). https://doi.org/10.1109/ICSE-C.
2017.126

Ferreira, R.C.B., Thom, L.H., Fantinato, M.: A semi-automatic
approach to identify business process elements in natural language
texts. In: ICEIS (3), pp. 250-261 (2017)

Fleischmann, A.: What is s-bpm? In: Buchwald, H., Fleischmann,
A., Seese, D., Stary, C. (eds.) S-BPM ONE: Setting the Stage
for Subject-Oriented Business Process Management, pp. 85—-106.
Springer, Berlin (2010)

Fontenla-Seco, Y., Lama, M., Bugarin, A.: Process-to-text: a
framework for the quantitative description of processes in natural
language. In: Heintz, F., Milano, M., O’Sullivan, B. (eds.) Trust-
worthy Al: Integrating Learning, Optimization and Reasoning, pp.
212-219. Springer, Berlin (2021)

Freund, N.: Development of a text-based representation of BPMN
models. Master’s thesis, Leibniz Universitidt Hannover, Hannover
(2018)

Friedrich, C., Schreiber, F.: Flexible layering in hierarchical draw-
ings with nodes of arbitrary size. In: Proceedings of the 27th
Australasian conference on Computer science-Volume 26, pp. 369—
376. Australian Computer Society, Inc., P.O. Box 319 Darlinghurst,
NSW 2010, Australia (2004)

. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation

from natural language text. In: Proceedings of the CAiSE, pp. 482—
496. Springer (2011)

Fuhrmann, H., von Hanxleden, R.: Taming graphical modeling. In:
International Conference on Model Driven Engineering Languages
and Systems, pp. 196-210. Springer (2010)

Gansner, E.R., North, S.C.: Anopen graph visualization system and
its applications to software engineering. Softw. Pract. Exp. 30(11),
1203-1233 (2000)

Ghose, A., Koliadis, G., Chueng, A.: Process discovery from model
and text artefacts. In: 2007 IEEE Congress on Services, pp. 167—

@ Springer

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

174. IEEE Computer Society, Los Alamitos, CA, USA (2007).
https://doi.org/10.1109/SERVICES.2007.52

Goldschmidt, T., Becker, S., Uhl, A.: Classification of concrete tex-
tual syntax mapping approaches. In: Schieferdecker, 1., Hartman,
A. (eds.) Model Driven Architecture: Foundations and Applica-
tions, pp. 169—184. Springer, Berlin (2008)

Gronninger, H., Krahn, H., Rumpe, B., Schindler, M., Volkel, S.:
Textbased modeling. In: Proceedings of the 4th International Work-
shop on Software Language Engineering (2007)

Haisjackl, C., Zugal, S.: Investigating differences between graph-
ical and textual declarative process models. In: Iliadis, L., Papa-
zoglou, M., Pohl, K. (eds.) Advanced Information Systems Engi-
neering Workshops, pp. 194-206. Springer (2014)

He, X., Zhang, T., Hu, C.J., Ma, Z., Shao, W.: An mde perfor-
mance testing framework based on random model generation. J.
Syst. Softw. 121, 247-264 (2016). https://doi.org/10.1016/j.jss.
2016.04.044. (https://www.sciencedirect.com/science/article/pii/
S0164121216300292)

Heijstek, W., Kiihne, T., Chaudron, M.R.: Experimental analysis
of textual and graphical representations for software architecture
design. In: 2011 International Symposium on Empirical Software
Engineering and Measurement, pp. 167-176. IEEE (2011)
Henzinger, M.: The state of the art in dynamic graph algorithms.
In: SOFSEM 2018: Theory and Practice of Computer Science, pp.
40-44. Springer (2018)

Honkisz, K., Kluza, K., Wisniewski, P.. A concept for generat-
ing business process models from natural language description. In:
International Conference on Knowledge Science, Engineering and
Management, pp. 91-103. Springer (2018)

Hover, K.M., Borgert, S., Miihlhduser, M.: A domain specific
language for describing s-bpm processes. In: Fischer, H., Schnee-
berger, J. (eds.) S-BPM ONE: Running Processes, pp. 72-90.
Springer, Berlin (2013)

Ivanchikj, A., Pautasso, C.: Sketching process models by mining
participant stories. In: Proceedings of the BPM Forum, pp. 3-19.
Springer (2019)

Ivanchikj, A., Serbout, S., Pautasso, C.: From text to visual bpmn
process models: Design and evaluation. In: 23rd International Con-
ference on Model Driven Engineering Languages and Systems
(MODELS). ACM/IEEE, Montreal, Canada (2020)

Izs6, B., Szarnyas, G., Rath, 1., Varré, D.: Mondo-sam: a frame-
work to systematically assess mde scalability. In: Proceedings of
the 2nd Workshop on on scalability in Model Driven Engineering
(BigMDE@STAF), pp. 4043 (2014)

Jannaber, S., Riehle, D.M., Delfmann, P., Thomas, O., Becker, J.:
Designing a framework for the development of domain-specific
process modelling languages. In: International Conference on
Design Science Research in Information System and Technology,
pp- 39-54. Springer (2017)

Jolak, R., Savary-Leblanc, M., Dalibor, M., Wortmann, A., Hebig,
R., Vincur, J., Polasek, I., Le Pallec, X., Gérard, S., Chaudron, M.R.:
Software engineering whispers: the effect of textual vs. graphical
software design descriptions on software design communication.
Empir. Softw. Eng. 25, 4427-4471 (2020)

Jordan, D., Evdemon, J.: Business process model and notation ver-
sion 2.0. OMG (2011). http://www.omg.org/spec/BPMN/2.0/
Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M.,
Volkel, S.: Design guidelines for domain specific languages. In:
Proceedings of the 9th OOPSLA Workshop on Domain-Specific
Modeling (DSM’ 09). Association for Computing Machinery, New
York, NY, USA (2009)

Kous, K.: Comparative analysis versions of bpmn and its support
with control-flow patterns. In: Proc. of 33rd International Conven-
tion on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pp. 315-319. IEEE (2010)

https://doi.org/10.1109/SBES.2015.12
https://doi.org/10.1109/RCIS.2015.7128860
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
http://ceur-ws.org/Vol-615/paper16.pdf
http://ceur-ws.org/Vol-615/paper16.pdf
https://doi.org/10.1109/ICSE-C.2017.126
https://doi.org/10.1109/ICSE-C.2017.126
https://doi.org/10.1109/SERVICES.2007.52
https://doi.org/10.1016/j.jss.2016.04.044
https://doi.org/10.1016/j.jss.2016.04.044
https://www.sciencedirect.com/science/article/pii/S0164121216300292
https://www.sciencedirect.com/science/article/pii/S0164121216300292
http://www.omg.org/spec/BPMN/2.0/

Live Process Modeling...

1905

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Lehman, J.A.: An empirical comparison of textual and graphical
data structure documentation for Cobol programs. IEEE Trans.
Softw. Eng. 15(9), 1131-1135 (1989)

Leopold, H., Mendling, J., Polyvyanyy, A.: Generating natural
language texts from business process models. In: International Con-
ference on Advanced Information Systems Engineering, pp. 64-79.
Springer (2012)

Liu, W., Wang, Y., Zhou, Q., Li, T.: Graphical modeling vs. textual
modeling: an experimental comparison based on istar models. In:
Proceedings of the IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC 2021), pp. 844-853. IEEE
(2021)

Lépez, H.A., Marquard, M., Muttenthaler, L., Strgmsted, R.:
Assisted declarative process creation from natural language
descriptions. In: Proceedings of the 23rd International Enterprise
Distributed Object Computing Workshop (EDOCW 2019), pp. 96—
99. IEEE Computer Society, Los Alamitos, CA, USA (2019)
Luebbe, A., Weske, M.: Determining the effect of tangible business
process modeling. In: Plattner, H., Meinel, C., Leifer, L. (eds.)
Design Thinking Research, pp. 241-257. Springer, Berlin (2012)
MacCaull, W., Rabbi, F.: Nova workflow: a workflow management
tool targeting health services delivery. In: Liu, Z., Wassyng, A.
(eds.) Foundations of Health Informatics Engineering and Systems,
pp. 75-92. Springer, Berlin (2012)

Maro, S., Steghofer, J.P., Anjorin, A., Tichy, M., Gelin, L.: On
integrating graphical and textual editors for a UML profile based
domain specific language: an industrial experience. In: Proceedings
of the International Conference on Software Language Engineer-
ing, pp. 1-12. ACM (2015)

McLellan, S., Muddimer, A., Peres, S.C.: The effect of experience
on system usability scale ratings. J. Usability Stud. 7(2), 56-67
(2012)

Melia, S., Cachero, C., Hermida, J.M., Aparicio, E.: Comparison
of a textual versus a graphical notation for the maintainability of
MDE domain models: an empirical pilot study. Softw. Qual. J.
24(3), 709-735 (2016)

Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and
enacting complex data dependencies in business processes. In:
Proceedings of the Business Process Management, pp. 171-186.
Springer (2013)

Myers, B.A.: Taxonomies of visual programming and program
visualization. J. Vis. Lang. Comput. 1(1), 97-123 (1990)

Nielsen, J.: Usability Engineering. Morgan Kaufmann, Los Altos
(1994)

Nielsen, J., Levy, J.: Measuring usability: preference vs. perfor-
mance. Commun. ACM 37(4), 66-75 (1994)

Odeh, Y.: BPMN in engineering software requirements: an intro-
ductory brief guide. In: Proceedings of the 9th International
Conference on Information Management and Engineering, pp. 11—
16. Association for Computing Machinery, New York, NY, United
States (2017)

Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Menictas,
C.: Making sense of business process descriptions: an experimental
comparison of graphical and textual notations. J. Syst. Softw. 85(3),
596-606 (2012)

Pacheco, C., et al.: Requirements elicitation techniques: a system-
atic literature review based on the maturity of the techniques. IET
Softw. 12(4), 365-378 (2018)

Petre, M.: Why looking isn’t always seeing: readership
skills and graphical programming. Commun. ACM 38(6), 33—
44 (1995). https://doi.org/10.1145/203241.203251. (http://portal.
acm.org/citation.cfm?doid=203241.203251)

Rabbi, F., MacCaull, W.: T-square: a domain specific language for
rapid workflow development. In: Proceedings of the 15th Interna-
tional Conference on Model Driven Engineering Languages and

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Systems, MODELS’12, pp. 36-52. Springer, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33666-9_4

Russell, N., Van Der Aalst, W.M., Ter Hofstede, A.H.: Workflow
Patterns: The Definitive Guide. MIT Press, Cambridge (2016)
Sharafi, Z., Marchetto, A., Susi, A., Antoniol, G., Guéhéneuc, Y.G.:
An empirical study on the efficiency of graphical vs. textual repre-
sentations in requirements comprehension. In: Proceedings of the
21st International Conference on Program Comprehension (ICPC
2013), pp. 33-42. IEEE (2013)

Skouradaki, M., Roller, D., Pautasso, C., Leymann, F.: “bpelanon”:
anonymizing bpel processes. In: Proceedings of the 6th Central
European Workshop on Services and their Composition (ZEUS
2014). Potsdam, Germany (2014)

Tanimoto, S.L.: A perspective on the evolution of live program-
ming. In: 2013 1st International Workshop on Live Programming
(LIVE), pp. 31-34 (2013). https://doi.org/10.1109/LIVE.2013.
6617346

Van der Aa, H., Carmona Vargas, J., Leopold, H., Mendling, J.,
Padr6, L.: Challenges and opportunities of applying natural lan-
guage processing in business process management. In: Proceedings
of the 27th International Conference on Computational Linguistics
(COLING 2018), pp. 2791-2801. Association for Computational
Linguistics (2018)

vander Aa, H., Di Ciccio, C., Leopold, H., Reijers, H.A.: Extracting
declarative process models from natural language. In: International
Conference on Advanced Information Systems Engineering, pp.
365-382. Springer (2019)

van der Aalst, W.: Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, Berlin (2011)

van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Bar-
ros, A.P.: Workflow patterns. Distrib. Parallel Databases 14(1),
5-51(2003)

Van Amstel, M., Bosems, S., Kurtev, 1., Pires, L.F.: Performance
in model transformations: experiments with ATL and QVT. In:
International Conference on Theory and Practice of Model Trans-
formations, pp. 198-212. Springer (2011)

Van Der Aalst, W.: Process mining. Commun. ACM 55(8), 76-83
(2012)

Weske, M.: Business Process Management: Concepts, Languages,
and Architectures, 2nd edn. Springer, Berlin (2012)

‘Wohed, P., Dumas, M., Ter Hofstede, A.H., Russell, N.: Pattern-
based analysis of BPMN-an extensive evaluation of the control-
flow, the data and the resource perspectives. BPM Center Report
BPM-06-17 (2006). http://bpmcenter.org

Zimoch, M., Pryss, R., Probst, T., Schlee, W., Reichert, M.: The
repercussions of business process modeling notations on mental
load and mental effort. In: Proceedings of the BPM, pp. 133-145.
Springer (2018)

Zur Muehlen, M., Recker, J.: How much language is enough? theo-
retical and practical use of the business process modeling notation.
In: Proceedings of the CAiSE, pp. 465-479. Springer (2008)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1145/203241.203251
http://portal.acm.org/citation.cfm?doid=203241.203251
http://portal.acm.org/citation.cfm?doid=203241.203251
https://doi.org/10.1007/978-3-642-33666-9_4
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/LIVE.2013.6617346
http://bpmcenter.org

1906

A. lvanchikj et al.

Ana Ivanchikj is a Business Ana-
lyst at additiv where she works
on defining and improving busi-
ness processes in wealth manage-
ment. She has obtained her Ph.D.
at the Faculty of Informatics at
USI Lugano under the supervision
of Prof. Dr. Cesare Pautasso. Her
main research interests lie in mod-
eling and visualisation with par-
ticular focus on BPMN which has
motivated her work in real-time
textual modelling of BPMN pro-
cesses and the impact of BPMN
model’s characteristics on the per-
formance of BPMN 2.0 Workflow Management Systems. Addition-
ally she has worked on extending BPMN Choreography diagrams to
design RESTalk as a modelling language for RESTful conversations.
She is a mentor at Ated4kids trying to get children interested in com-
putational thinking. You can find more information on linkedin and
follow her on Twitter (@ivanchikj).

Souhaila Serbout is a Ph.D. stu-

dent in the Design and Web Infor-

mation Systems Engineering res-

earch group at the Software Insti-

tute at USI Lugano, Switzerland,

under the supervision of Prof. Dr.

Cesare Pautasso. She carried out

a Masters’s in New Technologies

of Informatics at the Faculty of

Informatics of the University of

Murcia, Spain. In 2018, obtained

a state engineer’s degree in com-

puter science from Ecole Nationale
Suprieure d’Informatique et d’Ana-
lyse des Systemes in Rabat, Moro-

cco. Currently, she works on visualizing and analyzing Web APIs

structures, data models and patterns to find the mismatches between

developers’ expectations and real-world APIs designs.

@ Springer

Cesare Pautasso is full professor
at the Software Institute at USI
Lugano, Switzerland. He leads the
Architecture, Design and Web Inf-
ormation Systems Engineering res-
earch group, which focuses on
building experimental systems to
explore the intersection of Text-
to-Visual modeling languages, API
analytics and liquid software archi-
tectures. He is the general chair
for EuroPLoP 2022. He was the
program co-chair for ICWE 2021,
ICSOC 2013, ECOWS 2010 and
Software Composition 2008 and
the ICWE 2016, ECOWS 2011 general chair. He is the co-editor of
the IEEE Software Insights department. His e-books on Email Anti-
Patterns, Software Architecture, Business Process Management, and
API visualization are available on LeanPub.

	Live process modeling with the BPMN Sketch Miner
	Abstract
	1 Introduction
	2 BPMN Sketch miner design
	2.1 Live modeling environment
	2.2 BPMN as a textual domain-specific language
	2.2.1 Design decisions
	2.2.2 Language syntax
	2.2.3 Control flow patterns

	2.3 Model generation pipeline

	3 Usability and learnability evaluation summary
	3.1 Model understanding and accuracy
	3.2 System usability scale
	3.3 Efficiency and learnability

	4 Performance evaluation
	4.1 Benchmark workload
	4.2 Performance metric
	4.3 Testbed
	4.4 Performance results
	4.4.1 Total execution time
	4.4.2 Pipeline stages execution time
	4.4.3 Scalability
	4.4.4 Performance impact of BPMN constructs

	4.5 Discussion
	4.5.1 RQ1. Is the performance sufficient for live modeling?
	4.5.2 RQ2. Is there a bottleneck in the pipeline?
	4.5.3 RQ3. How well does it scale to larger models?
	4.5.4 RQ4. What is the impact of specific language constructs on performance?

	4.6 Threats to validity

	5 Related work
	5.1 Empirical studies comparing graphical versus textual representations
	5.2 From text to visual process models
	5.3 Model transformation performance benchmarking
	5.4 Transforming process models back into natural language

	6 Conclusion
	7 Future work
	Acknowledgements
	Appendix: model generation time versus model size
	References

