
FromOpenAPI Fragments to
API Pattern Primitives and Design Smells
Souhaila Serbout
Software Institute, USI
Lugano, Switzerland

souhaila.serbout@usi.ch

Cesare Pautasso
Software Institute, USI
Lugano, Switzerland
c.pautasso@ieee.org

Uwe Zdun
University of Vienna, Faculty of Computer Science,

Software Architecture Research Group
Vienna, Austria

Olaf Zimmermann
University of Applied Sciences of Eastern Switzerland

Rapperswil, Switzerland

ABSTRACT
In the past few years, the OpenAPI Specification (OAS) has emerged
as a standard description language for accurately modeling Web
APIs. Today, thousands of OpenAPI descriptions can be found by
mining open source repositories. In this paper, we attempt to exploit
these artifacts to extract commonly occurring building blocks used
inWeb API structures, in order to assist Web API designers in their
modelling task. Our work is based on a fragmentation mechanism,
that starts from OpenAPI descriptions ofWeb APIs to extract their
structures, then fragment these structures into smaller blocks. This
approach enabled us to extract a large dataset of reoccurring frag-
ments from a collection of 6619 API specifications. Such fragments
have been found multiple times in the same or across different APIs.
We have classified the most reoccurring fragments into four pattern
primitives used to expose in the API access to collections of items.
We distinguish for each primitive variants from design smells. This
classification is based on the specific combinations of operations
associated with the collection items and on an in-depth analysis of
their natural language labels and descriptions. The resulting pattern
primitives are intended to support designers who would like to in-
troduce one or more collections for a specific class of items in their
HTTP-based API.

CCS CONCEPTS
• Software and its engineering→ Patterns;Designing software.

KEYWORDS
ApplicationProgrammingInterfaces,APIPatterns,APIDesignSmells,
API Structural Fragments, Collections, Pattern Minning, OpenAPI
ACMReference Format:
Souhaila Serbout, Cesare Pautasso, Uwe Zdun, and Olaf Zimmermann. 2021.
From OpenAPI Fragments to API Pattern Primitives and Design Smells.
In European Conference on Pattern Languages of Programs (EuroPLoP’21),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP’21, July 7–11, 2021, Graz, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8997-6/21/07. . . $15.00
https://doi.org/10.1145/3489449.3489998

July 7–11, 2021, Graz, Austria. ACM, New York, NY, USA, 35 pages. https:
//doi.org/10.1145/3489449.3489998

1 INTRODUCTION
Application Programming Interfaces (APIs) open up software archi-
tectures so that the resulting software system can be integrated with
external systems, developed at different times by different parties.
In this paper, out of many existing kinds of APIs, we focus onWeb
APIs [3, 14, 17, 18, 21, 24] remotely accessible through the HTTP
protocol and described using the standard OpenAPI specification
language [22]. We do so because of the large number of API descrip-
tions using this language which can be retrieved by crawling open
source repositories (Figure 3). While the original purpose of Ope-
nAPI was to generate human-readable documentation, it can also
be used to generate interactive test clients, as well as client-side and
server-side stubs [1, 2, 11].

In this paper, we statically analyze a large collection of real-world
API descriptions looking for recurring structures that can play the
roles of pattern primitives [25] which can be composed to obtain
API design patterns [28]. In particular, we are interested in the re-
sources exposed by the HTTP API naming and in the relationship
between resource paths and the correspondingHTTPmethods. This
information can be used by clients to invoke the corresponding
operations.

As shown in Figure 1, we started by crawling open-source code
repositories for API description documents that use the OpenAPI
specification. These documents are parsed and fed to a model from
which API structure trees can be extracted. These trees are then
fragmented, and the resulting fragments are matched to detect reoc-
curring ones. Finally, they are clustered to obtain known uses.

Our contributions include:
(1) Amethod to detect similar reoccurring API structures, which

takes into account natural language labels associated with
each path segment. This method can be also used to compare
the structure of differentWeb APIs.

(2) A collection ofwidely usedAPI fragments,with a quantitative
analysis about how frequently they occur across the same or
different real-world APIs.

(3) A collection of structural pattern primitives which have been
used as building blocks forHTTP-basedAPIs. In particularwe
selectedAPI structures used toprovideAPI clientswith access
to resource collections of related items (e.g., user accounts,

1

https://doi.org/10.1145/3489449.3489998
https://doi.org/10.1145/3489449.3489998
https://doi.org/10.1145/3489449.3489998
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489449.3489998&domain=pdf&date_stamp=2022-01-23

EuroPLoP’21, July 7–11, 2021, Graz, Austria

GitHub Public Repositories

Crawler

OpenAPI Parser

API Specification Documents

API Struc-

ture Extraction

API Model

API Fragmentation

API Tree

Matching and

Clustering

Labeled API Fragments

Selection

API Structure Primitives

API Patterns API Design Smells

Figure 1: API Analytics Pipeline: From API Specifications to
Patterns

purchase orders and their items, computational jobs, blog
posts and their comments, videos or audio tracks).

(4) A classification of some design smells found acrossWeb APIs.
(5) Two composition operators for assembling the pattern primi-

tives into larger API structures and a proposal for connecting
themwith API design patterns and service contracts.

The remainder of this paper is structured as follows: In Section 2,
we first give an overview about the data set of OpenAPI documents
under study. Then we present our approach that consists of rep-
resenting APIs as trees based on their textual documentation. We
finally detail the fragmentation approach we followed in order to
extract common frequent structures that can be found across sameor
different APIs. Section 3 presents our two-step clustering approach,
which takes into accounts both the structure and the semantic close-
ness between the labels sequences attached to the nodes of a specific
fragment. The collection of structural API pattern primitives is pre-
sented in Section 4. Section 5 provides two examples of how these
pattern primitives can be combined to form larger API structures.
It also demonstrates how the pattern primitives and fragments can
be mapped to architectural patterns and interface description lan-
guages. Section 6 and Section 7 cover related work and present the
threats to validity of our work. Finally in Section 8, we present our
conclusions.

2 FRAGMENTINGAPIS
2.1 API Collection Overview
We analyze technical API descriptions written in OpenAPI, a com-
monly used Interface Description Language (IDL) to specify the
functional characteristics of HTTP-based and RESTful APIs, as well
as selected non-functional ones (for instance, some security policies).

Bymining public repositories shared onGitHub duringDecember
2020 and January 2021,we collected a data set of 6919API description
documents, with an average size of 22.8KB, including specifications
of some well-known APIs such as Twilio, Slack, Flickr APIs, Google
APIs, and Amazon APIs. All the APIs described in the descriptions
under study contain at least one method and one path. Because of
the lack of space, in this paper, we only include one visualization of
one of the largest API in the dataset (Figure 9), and other examples
of smaller APIs (Appendix A) to show how the detected primitives
are used as building blocks to construct the whole API’s structure.

The yearly distribution of the age of the OpenAPI documents in
our dataset is depicted in Figure 3. The horizontal axis refers to the
year of the last commit that updated the document.

2.1.1 OAS versions distribution. The collection studied in this work
contains 6619 OAS descriptions. 28.9% are written in OpenAPI 3.0
and 71.1% are written in Swagger 2.0, coming frommore than 600
different providers.

The two versions are slightly different from each other on the
content level, but they both allow describing API structures with
almost the same level of granularity. In Figure 4, we describe the
maindifferences between the twoversions.Thenumbers (1), (2),.., (9),
show the mappings between the sections of a description written in
OAS 2.0 and their corespondents in a description document written
in OAS 3.0. The first difference is in the servers details section.While
in OAS 2.0 it was possible to include only one endpoint for an API,
in OAS 3.0 it is allowed to include multiple server objects. Other
structural rearrangements have been done in OAS 3.0 in order to
increase the reusability of definitions, such as the inclusion of the
Components section, where securityDefinitions, schema definitions,
parameters, and responses are defined. In addition, in OAS 3.0 a
Component object can also contain callback descriptions, which
makes this version more efficient in describing asynchronous APIs.
Moreover, OAS 3.0 improved the description of the parameters and
supports more security schemes and bearer formats than OAS 2.0.

In our case, these differences between the two versions do not
impact the results of the structural analysis and the APIs fragments
extraction, because our study focused on the paths and methods
provided by APIs, which are described in both versions.

2.1.2 HTTP Methods usage. In Figure 2 we show an overview of
HTTPmethods usage in a subset of the APIs under study. We clas-
sify APIs based on which HTTP methods they use following the
RESTful maturity model [7], which distinguishes L0) APIs that use
only one endpoint and one method from L1) APIs that use multiple
endpoints and still one method associated to each endpoint, and L2)
APIswhich usemultiplemethodswithmultiple endpoints. Given the
lack of support for describing hypermedia in OpenAPI documents,
we are unable to distinguish the highest level of the maturity model
L3, which includes the APIs that make use of the REST principle
Hypermedia as the Engine of Application State (HATEOAS).

2

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria
FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, AustriaFromOpenAPI Fragments to

API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

K
o
d
in

g
A
P
I

D
o
c
k
s
t
o
r
e

A
P
I

S
p
in

n
a
k
e
r
A
P
I

N
e
t
B
o
x

A
P
I

N
o
d
e
u
m

A
P
I

C
o
d
e
fr
e
s
h

A
P
I

K
u
b
e
r
m

a
t
ic

A
P
I

S
e
c
u
r
e
S
K
Y
E

P
r
o
b
e
ly

D
e
v
e
lo

p
e
r
s

S
li
c
e
b
o
x

A
P
I

C
o
m

ic
s
D
a
t
a
b
a
s
e

A
P
I

P
e
e
r
T
u
b
e

M
a
n
d
r
il
l

b
r
o
o
k
ly

n
D
e
p
lo
y
e
d

A
P
Is

S
t
a
c
k
S
t
o
r
m

A
P
I

A
c
c
o
u
n
t
in

g
S
li
c
e
b
o
x

R
e
fo

c
u
s
A
P
I

P
ip

e
li
n
e

A
P
I

O
p
e
n
S
t
o
r
a
g
e

S
D
K

A
n
n
o
F
a
b

W
e
b

A
P
I

A
m

a
z
o
n

A
P
I
G
a
t
e
w
a
y

O
p
e
n
B
M

P
R
E
S
T

A
P
I

M
A
D
A
p
p

A
P
I

A
W

S
C
o
n
fi
g

A
W

S
D
e
v
ic
e

F
a
r
m

G
e
n
e
r
ic

A
P
I
S
e
r
v
e
r

c
o
r
e
-m

e
t
a
d
a
t
a

A
W

S
O
p
s
W

o
r
k
s

D
e
m

is
t
o

A
P
I

U
la

b
o
x

A
P
Iv

2
A
p
a
c
t
a

E
n
s
e
m

b
l
R
e
s
t
A
P
I

K
ia

li
T
w
il
io

A
m

a
z
o
n

R
e
d
s
h
if
t

S
E
S
A
M

N
o
d
e

li
fe
-s
u
it
e
-s
e
r
v
e
r

A
p
ig

e
e

A
P
I

B
it
r
is
e

A
P
I

T
h
e

C
M

N
A
p
i

A
u
t
o

S
c
a
li
n
g

L
iv

e
A
P
I
R
e
fe
r
e
n
c
e

C
lo

u
d
ia

t
o
r
R
E
S
T

A
p
i

F
la

t
A
P
I

R
B
K
m

o
n
e
y

W
a
ll
e
t
A
P
I

A
m

a
z
o
n

L
ig

h
t
s
a
il

A
m

a
z
o
n

G
a
m

e
L
if
t

S
w
a
g
g
e
r
H
u
b

R
e
g
is
t
r
y

A
n
im

a
t
io

n
B
o
a
r
d

v
2

F
it
b
it

P
lu

s
F
it
b
it

P
lu

s
A
P
I

M
P
O

A
P
I

F
la

t
M

e
s
s
a
g
e
M

e
d
ia

A
W

S
S
e
r
v
ic
e

C
a
t
a
lo

g
E
d
a
v
o
d
a

A
P
I

T
w
in

e
A
W

S
W

A
F

R
e
g
io

n
a
l

K
u
b
e
V
ir
t
A
P
I

V
ip

p
s
A
P
I

A
W

S
C
lo

u
d
F
o
r
m

a
t
io

n
M

e
t
a
d
a
t
a

C
a
t
a
lo

g
E
c
h
o

N
e
s
t

A
I
L
a
b

U
I
S
e
r
v
ic
e

V
ic
t
o
r
O
p
s

A
W

S
C
o
d
e
D
e
p
lo
y

D
a
t
a

R
e
p
o
s
it
o
r
y

A
P
I

A
W

S
O
r
g
a
n
iz
a
t
io

n
s

A
m

a
z
o
n

E
la

s
t
iC

a
c
h
e

P
A
C

C
o
n
t
r
o
l

B
u
s
in

e
s
s
R
e
g
is
t
r
ie
s

A
s
s
is
t
e
d
In

s
t
a
ll

G
e
n
o
m

ic
s

A
W

S
W

A
F

A
W

S
C
o
d
e
P
ip

e
li
n
e

A
W

S
D
ir
e
c
t
C
o
n
n
e
c
t

K
u
b
e
S
p
h
e
r
e

A
d
v
a
n
c
e
d

s
t
a
s
h
-s
e
r
v
e
r

P
C
A
9
9
5
6
B

A
P
I

F
u
n
T
r
a
n
s
la

t
io

n
s

P
a
g
e
r
T
r
e
e

A
P
I
Y
A
M

L
W

h
a
t
s
A
p
p

B
u
s
in

e
s
s

A
d
m

id
io

R
E
S
T
-A

P
I

F
u
n
T
r
a
n
s
la

t
io

n
s
A
P
I

A
p
p

V
e
y
o
r

F
la

s
h
c
a
r
d
s
A
P
I

W
ik

im
e
d
ia

A
m

a
z
o
n

R
o
u
t
e

5
3

O
r
c
h
e
s
t
r
a
t
io

n
M

Q
A

M
e
t
r
ic

S
e
r
v
ic
e

O
p
e
n
P
A
I
R
E
S
T
fu

l
A
P
I

A
p
p
V
e
y
o
r

A
p
p
V
e
y
o
r
R
E
S
T

A
P
I

A
W

S
Io

T
C
o
u
r
s
e
P
lu

s
A
P
I

C
a
r
S
e
r
v
ic
e

A
P
I

O
a
k
O
S

D
a
s
h
b
o
a
r
d

A
P
I

0

100

200

300

API

N
u
m
b
er

of
M
et
h
o
d
s GET HEAD POST PUT DELETE PATCH OPTIONS

Figure 2: API Collection Sample (sorted by Number of Paths)

we are unable to distinguish the highest level of the maturity model
L3, which includes the APIs that make use of the REST principle
Hypermedia as the Engine of Application State (HATEOAS).

Still, we can clearly see different types of APIs emerging if we
simply count howmany HTTP methods are associated with each
path enumerated in the API description (Figure 5). We have grouped
the APIs into sets according to the HTTPmethod combinations they
use and depicted the results in the bar chart in Figure 5. The most
popular group makes use of the CRUD-like primitives of GET, PUT,
POST, and DELETE. The second most popular group only uses the
read-only GETmethod. This is closely followed in terms of size, by
theAPIswhichuseonly theGETorPOSTmethods.Another groupof
similar size can be observed by combining CRUDAPIs which do not
use the PUTmethod (so they alias update and creation operations
under the same POSTmethod) together with APIs which instead of
using the PUTmethod they replace it with the PATCHmethod. The
next group includes the pure RPC APIs, which only use the POST
method. The last group worth mentioning is the ones that use all
five methods, which includes 442 APIs. The collection also includes
about 500 APIs with different method combinations, but of rather a
small size.

2015 2016 2017 2018 2019 2020

0

0.5

1
·104

53 265 703 919
1,624

3,055

Cumulative
Number of OAS documents

Number of OAS documents

Figure 3: Yearly distribution of the age of the OAS files
crawled fromGitHub

Figure 4: Open API SpecificationMetamodel Versions: 2.0 vs
3.0

2.1.3 API sizes distribution. Figure 6 presents an overview of the
size of the APIs in the same groups, measured with two different
metrics [8]: a) the number of paths listed in theAPI description and b)
the nodes present in the API tree. The boxplots in Figure 6 represent
the distribution of the size measurements for each API. Overall, the
median values for the size of the APIs in the collection reach approx.
50 nodes and 20 paths.

2.2 Domain Concepts
In this work, we focus on analyzing the structures of Web APIs
with the goal of detecting APIs with similar structures. Due to the
granularity ofAPI descriptions inOpenAPImodels,we could a create
tree model representation for each API in the collection, which we
call from now on API Tree. For lifting the level of abstraction of the
tree model, we unlabel all its nodes. We refer to the unlabeled tree
model as API Tree Structure.

3

Figure 2: API Collection Sample (sorted by Number of Paths)

we are unable to distinguish the highest level of the maturity model
L3, which includes the APIs that make use of the REST principle
Hypermedia as the Engine of Application State (HATEOAS).

Still, we can clearly see different types of APIs emerging if we
simply count howmany HTTP methods are associated with each
path enumerated in the API description (Figure 5). We have grouped
the APIs into sets according to the HTTPmethod combinations they
use and depicted the results in the bar chart in Figure 5. The most
popular group makes use of the CRUD-like primitives of GET, PUT,
POST, and DELETE. The second most popular group only uses the
read-only GETmethod. This is closely followed in terms of size, by
theAPIswhichuseonly theGETorPOSTmethods.Another groupof
similar size can be observed by combining CRUDAPIs which do not
use the PUTmethod (so they alias update and creation operations
under the same POSTmethod) together with APIs which instead of
using the PUTmethod they replace it with the PATCHmethod. The
next group includes the pure RPC APIs, which only use the POST
method. The last group worth mentioning is the ones that use all
five methods, which includes 442 APIs. The collection also includes
about 500 APIs with different method combinations, but of rather a
small size.

2015 2016 2017 2018 2019 2020

0

0.5

1
·104

53 265 703 919
1,624

3,055

Cumulative
Number of OAS documents

Number of OAS documents

Figure 3: Yearly distribution of the age of the OAS files
crawled fromGitHub

Figure 4: Open API SpecificationMetamodel Versions: 2.0 vs
3.0

2.1.3 API sizes distribution. Figure 6 presents an overview of the
size of the APIs in the same groups, measured with two different
metrics [8]: a) the number of paths listed in theAPI description and b)
the nodes present in the API tree. The boxplots in Figure 6 represent
the distribution of the size measurements for each API. Overall, the
median values for the size of the APIs in the collection reach approx.
50 nodes and 20 paths.

2.2 Domain Concepts
In this work, we focus on analyzing the structures of Web APIs
with the goal of detecting APIs with similar structures. Due to the
granularity ofAPI descriptions inOpenAPImodels,we could a create
tree model representation for each API in the collection, which we
call from now on API Tree. For lifting the level of abstraction of the
tree model, we unlabel all its nodes. We refer to the unlabeled tree
model as API Tree Structure.

3

Figure 2: API Collection Sample (sorted by Number of Paths)

Still, we can clearly see different types of APIs emerging if we
simply count howmany HTTP methods are associated with each
path enumerated in the API description (Figure 5). We have grouped
the APIs into sets according to the HTTPmethod combinations they
use and depicted the results in the bar chart in Figure 5. The most
popular group makes use of the CRUD-like primitives of GET, PUT,
POST, and DELETE. The second most popular group only uses the
read-only GETmethod. This is closely followed in terms of size, by
theAPIswhichuseonly theGETorPOSTmethods.Another groupof
similar size can be observed by combining CRUDAPIs which do not
use the PUTmethod (so they alias update and creation operations
under the same POSTmethod) together with APIs which instead of
using the PUTmethod they replace it with the PATCHmethod. The
next group includes the pure RPC APIs, which only use the POST
method. The last group worth mentioning is the ones that use all
five methods, which includes 442 APIs. The collection also includes
about 500 APIs with different method combinations, but of rather a
small size.

2.1.3 API sizes distribution. Figure 6 presents an overview of the
size of the APIs in the same groups, measured with two different

2015 2016 2017 2018 2019 2020

0

0.5

1
·104

53 265 703 919
1,624

3,055

Cumulative
Number of OAS documents

Number of OAS documents

Figure 3: Yearly distribution of the age of the OAS files
crawled fromGitHub

Figure 4: Open API SpecificationMetamodel Versions: 2.0 vs
3.0

metrics [8]: a) the number of paths listed in theAPI description and b)
the nodes present in the API tree. The boxplots in Figure 6 represent
the distribution of the size measurements for each API. Overall, the
median values for the size of the APIs in the collection reach approx.
50 nodes and 20 paths.

2.2 Domain Concepts
In this work, we focus on analyzing the structures of Web APIs
with the goal of detecting APIs with similar structures. Due to the
granularity ofAPI descriptions inOpenAPImodels,we could a create
tree model representation for each API in the collection, which we
call from now on API Tree. For lifting the level of abstraction of the
tree model, we unlabel all its nodes. We refer to the unlabeled tree
model as API Tree Structure.

In our analysis, we aim to detect repetitive tree fragments in the
API tree models. For that, we define an object called API Fragment,

3

EuroPLoP’21, July 7–11, 2021, Graz, Austria
EuroPLoP’21, July 7–11, 2021, Graz, Austria

0 500 1,000 1,500

DEL GET POST PUT

GET

GET POST

DEL GET POST

DEL GET PATCH POST

POST

DEL GET PATCH POST PUT

GET POST PUT

DEL GET PUT

GET PATCH POST

GET PUT

GET OPTION POST

PUT

GET PATCH POST PUT

DEL GET HEAD OPTION PATCH POST PUT

DEL GET OPTION POST PUT

DEL GET HEAD POST PUT

DEL GET PATCH PUT

DEL POST PUT

POST PUT

GET OPTION

HEAD

1,718
1,106
1,080

510
449
448
442

289
100
85
77
34
30
29
23
22
21
17
16
12
10
10

Number of APIs

M
et
h
o
d
s
P
re
se
n
t
in

th
e
A
P
I

0 10,000 20,000 30,000

Total Number of Methods

PUT
POST
PATCH
OPTIONS
HEAD
GET
DELETE

Figure 5: APIMethod Combination Overview

In our analysis, we aim to detect repetitive tree fragments in the
API tree models. For that, we define an object called API Fragment,
a subtree of an API tree. As for an API, the fragment also has an
unlabeledversion,whichwecallhenceforthFragmentTreeStructure.
After matching and filtering the set of API tree structures extracted
from the whole API collection under study, we obtained a list of
API structure primitives and another for API Structure smells, as
described in the domain concepts summary of Figure 7.

2.3 Representing the API Structure as a Tree
2.3.1 API Tree Model. We transform the textual documentation
related to the resources and the methods supported by the API into
a tree data model, to represent the nesting relationships between the
API endpoint URIs, enumerated as paths in the OpenAPI specifica-
tion. This model has two purposes:

(1) It can be used to visualize the functional characteristics of the
APIs graphically, to provide a quick overview supporting the
understanding of the APIs structure.

(2) The second purpose of this tree data model, described in
Figure 8, is to help to rapidly spot commonly used patterns
by analyzing reoccurring fragments found within a large set
of APIs. The elements colored in gray in Figure 8 are the ones
being mapped to graphical notations for being visualized in
the API Tree representation.

An example of an API Tree model visualization is in Figure 9.
Each API operation, originally listed in the OpenAPI file, can be
enumerated by following the path from the root until reaching a leaf
of the tree. These later represent the HTTP methods, enumerated in
each path in the Open API description. The nodes within the tree
are labeled with the corresponding URI path segment and labeled
depending on the type of the path segment (Table 1). The types of
nodes are explained in Section 3.1.1.

Due to this graphical representation we can also visually detect a
repetitive usage of an API Fragment in an API. This same fragment
can also reoccur in other APIs, with different labels.

In Table 1, we summarize the notation used in our APIs Tree
visualization.

Table 1: API Tree notation

Name Notation Signification

Root The root of the API Tree.

Method TheHTTPmethods,where each
method has a specific color.

Static path segment Path segmentwithnoparameter
Parametric path seg-
ment

Path segment with single {pa-
rameter}

Complex path seg-
ment

Path segment mixing parame-
ters with static labels

2.3.2 OpenAPI to Tree model transformation. For explaining the
model transformation, responsible of producing the tree visualiza-
tion of the OpenAPI descriptions, we use the description example in
Listing1,which is anexcerpt extracted fromtheOpenAPIdescription
of ApactaWeb API whose API Tree is shown in Figure 9.

The path /cities only contains one path segment {1:cities}
labeled cities. In our transformation, each segment is transformed
to a PathSegment object (Figure 8). We always connect the first path
segment to the Root object R , an added graphical element which
helps to visualize the API model as a tree. The {1:cities} path seg-
ment has no in-path parameters, thus it is mapped to the static path
segment notation (Table 1). As a result, the obtained first portion

4

Figure 5: APIMethod Combination OverviewFromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

0 20 40 60 80 100

DEL GET POST PUT

GET

GET POST

DEL GET POST

DEL GET PATCH POST

POST

DEL GET PATCH POST PUT

GET POST PUT

DEL GET PUT

GET PATCH POST

GET PUT

GET OPTION POST

PUT

GET PATCH POST PUT

DEL GET HEAD OPTION PATCH POST PUT

DEL GET OPTION POST PUT

DEL GET HEAD POST PUT

DEL GET PATCH PUT

DEL POST PUT

POST PUT

GET OPTION

HEAD

API Size (Number of Nodes)

M
et
h
o
d
s
P
re
se
n
t
in

th
e
A
P
I

0 10 20 30 40

API Size (Number of Paths)

Figure 6: APIMethod Combination Overview vs. API Size

Labels SequenceLabels Sequence

API TreeAPI Tree

API FragmentAPI Fragment

API TSAPI TS

API Fragment TSAPI Fragment TS

Pattern Primitive VariantPattern Primitive Variant Design SmellDesign Smell

1..*

1

1..*

1..* 1

1..* 11..* 1

Figure 7: Domain Concepts and their relations

of the tree is R

cities

, where we label the path segment node
‘cities‘. Moreover, the PathSegment object contains fields holding
some original information such as the summary, description and
the parameters information, for further usages. In this study, we
only distinguish between paths that are having in-path parameters
and the one that don’t have them. However we plan to extend the
graphical visualization to include also the other type of parameters
and the responses details.

This path provides only one GET operation, which allows to
get a city by its zip code. The HTTP methods are transformed to

ParameterParameter

InfoInfo

API TreeAPI Tree

ContactContact

ResponseResponsePathPath

PathSegmentPathSegment MethodMethod

ParametricPathSegmentParametricPathSegment StaticPathSegmentStaticPathSegment DynamicSegmentDynamicSegment

1..1

0..1

1..*

1..*

1..7

1..*

1..*

Figure 8: Excerpt of the API Tree metamodel, highlighting
the visualized elements

the Method object, which also keeps most of the original informa-
tion about the method, such as the summary, description, and the
response details. This Method object is mapped to the graphical

notation: , which contains as a label the name of HTTPmethod
and colored in specific color depending on the method. In this case,

5

Figure 6: APIMethod Combination Overview vs. API Size

a subtree of an API tree. As for an API, the fragment also has an
unlabeledversion,whichwecallhenceforthFragmentTreeStructure.
After matching and filtering the set of API tree structures extracted
from the whole API collection under study, we obtained a list of
API structure primitives and another for API Structure smells, as
described in the domain concepts summary of Figure 7.

2.3 Representing the API Structure as a Tree
2.3.1 API Tree Model. We transform the textual documentation
related to the resources and the methods supported by the API into

a tree data model, to represent the nesting relationships between the
API endpoint URIs, enumerated as paths in the OpenAPI specifica-
tion. This model has two purposes:

(1) It can be used to visualize the functional characteristics of the
APIs graphically, to provide a quick overview supporting the
understanding of the APIs structure.

(2) The second purpose of this tree data model, described in
Figure 8, is to help to rapidly spot commonly used patterns
by analyzing reoccurring fragments found within a large set
of APIs. The elements colored in gray in Figure 8 are the ones

4

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Labels SequenceLabels Sequence

API TreeAPI Tree

API FragmentAPI Fragment

API TSAPI TS

API Fragment TSAPI Fragment TS

Pattern Primitive VariantPattern Primitive Variant Design SmellDesign Smell

1..*

1

1..*

1..* 1

1..* 11..* 1

Figure 7: Domain Concepts and their relations

being mapped to graphical notations for being visualized in
the API Tree representation.

An example of an API Tree model visualization is in Figure 9.
Each API operation, originally listed in the OpenAPI file, can be
enumerated by following the path from the root until reaching a leaf
of the tree. These later represent the HTTP methods, enumerated in
each path in the Open API description. The nodes within the tree
are labeled with the corresponding URI path segment and labeled
depending on the type of the path segment (Table 1). The types of
nodes are explained in Section 3.1.1.

Due to this graphical representation we can also visually detect a
repetitive usage of an API Fragment in an API. This same fragment
can also reoccur in other APIs, with different labels.

In Table 1, we summarize the notation used in our APIs Tree
visualization.

Table 1: API Tree notation

Name Notation Signification

Root R The root of the API Tree.

Method The HTTP methods, where each
method has a specific color.

Static path segment Path segment with no parameter

Parametric path seg-
ment

Path segment with single
{parameter}

Complex path seg-
ment

Path segment mixing parameters
with static labels

2.3.2 OpenAPI to Tree model transformation. For explaining the
model transformation, responsible of producing the tree visualiza-
tion of the OpenAPI descriptions, we use the description example in
Listing1,which is anexcerpt extracted fromtheOpenAPIdescription
of ApactaWeb API whose API Tree is shown in Figure 9.

The path /cities only contains one path segment {1:cities}
labeled cities. In our transformation, each segment is transformed

ParameterParameter

InfoInfo

API TreeAPI Tree

ContactContact

ResponseResponsePathPath

PathSegmentPathSegment MethodMethod

ParametricPathSegmentParametricPathSegment StaticPathSegmentStaticPathSegment DynamicSegmentDynamicSegment

1..1

0..1

1..*

1..*

1..7

1..*

1..*

Figure 8: Excerpt of the API Tree metamodel, highlighting
the visualized elements

to a PathSegment object (Figure 8). We always connect the first path
segment to the Root object R , an added graphical element which
helps to visualize the API model as a tree. The {1:cities} path seg-
ment has no in-path parameters, thus it is mapped to the static path
segment notation (Table 1). As a result, the obtained first portion

of the tree is R

cities

, where we label the path segment node
‘cities‘. Moreover, the PathSegment object contains fields holding
some original information such as the summary, description and
the parameters information, for further usages. In this study, we
only distinguish between paths that are having in-path parameters
and the one that don’t have them. However we plan to extend the
graphical visualization to include also the other type of parameters
and the responses details.

This path provides only one GET operation, which allows to
get a city by its zip code. The HTTP methods are transformed to
the Method object, which also keeps most of the original informa-
tion about the method, such as the summary, description, and the
response details. This Method object is mapped to the graphical

notation: , which contains as a label the name of HTTPmethod
and colored in specific color depending on the method. In this case,

the notation should be
GET

. And as a result, the whole path visual

representation is:
R

cities
GET

Once all the methods of a path are all transformed, the algorithm
jumps to the next path and start extracting the path segments, and
put them in a list, respecting their original order. In our example the
second path is /cities/city_id. It contains tow path segments {
1: cities, 2: city_id }. The path segment { 1: cities } has already
been created. Knowing that each next path segment is a child of
the previous one, the path segment {2: city_id} should be then

5

EuroPLoP’21, July 7–11, 2021, Graz, Austria

Listing 1: Excerpt from the OpenAPI description of the
Apacta API shown in Figure 9
paths:

/cities:
get:

parameters:
- description: Search for a city with specific zip code
in: query
name: zip_code
required: false
type: string

responses:
'200':
description: OK
schema:

...
'404':
description: Not found
schema:

...
summary: Get list of cities supported in Apacta

/cities/{city_id}:
get:

parameters:
- in: path
name: city_id
required: true
type: string

responses:
'200':
description: OK
schema:

properties:
data:

...
success:

default: true
type: boolean

'404':
description: Not found
schema:

...

connected to { 1: cities }, which is already created and added to the
tree. This new node is also mapped to the PathSegment object, and
more specifically to the ParametricPathSegment object, which is
associated to the notation: . As consequence, the tree becomes :

R

cities

GET

{city id}

Same as for the previous path, this path also provides only one
Get HTTP method. So the API Tree corresponding to the whole
OpenAPI description example is:

R

cities

GET

{city id}
GET

The corresponding API Tree Structure for this API Tree is simply
obtained by removing all path labels:

R GET

GET

Looking at the tree model visualization in Figure 9, we can notice
this same portion of the tree, constructed from the example in List-
ing 1, appears multiple times with different labels. For computing
exactly howmuch frequently, a specific structure of a tree fragment
appears in the set of APIs in our collection, we proceed to apply the
fragmentation and matching technique presented in Section 2.4.

2.4 API Fragments
An API Fragment is any sub-tree (a connected sub-graph that in-
cludes some of the leaves of the original tree) of anAPI tree structure.
A sub-tree is also a tree, therefore a fragment can be also seen as
an API itself, which can be further decomposed. For instance, the
excerpt in Listing 1, is an example of anAPI fragment extracted from
the Apacta API (Figure 9).

To achieve our goal of detecting recurrent fragments in the API
structures, we present a two-step approach that uses an algorithm
that first extracts significant model fragments from a dataset of APIs
models, and then compares them across multiple APIs to detect
recurring ones.

2.4.1 APIs fragmentation approach. A treeT is a non-linear data
structure, where each non-leaf node can be seen as a root of one
or many sub-trees. The goal of the fragmentation functionF :T →
l f1,l f2,..,l fn is to extract all the possible sub-trees l f1, l f2, .., l fn
containing a sub-set of the ensemble of leaves ofT . For collecting the
nodes wewalkT using Depth-First Search (DFS). In this way, we can
extract all the trivial sub-trees, which are the ones having as root the
differentnodesofT . Thealgorithmextracts alsonon-trivial sub-trees,
which are built by extracting all the branches of a sub-tree having
as root a node N , then reconstructing the Tree Structures from all
the possible combinations of the branches. Note that a branch starts
from the root of the tree, and keeps all the methods attached to the
deepest path segment node of the tree. Doing so, we obtain all the
possible sub-trees having as a root the node N . Once a sub-tree is
retrieved, it is serialized as JavaScript Object Notation (JSON) and
stored in a MongoDB database. The same process is repeated over
all the nodes ofT until no node is left.

We analyse each API description in the collection and extract
T1,T2,..,Tm , wherem is equal to the size of our OpenAPI descriptions
collection.ThenweapplyF oneach tree to extract all possible labeled
sub-trees, or labeled fragmentsl f which includeasubsetof the leaves

6

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

of the tree fromwhere it was extractedT . While labeled fragments
carry the original path segments labels, unlabeled fragments fj only
distinguish whether a path segment is parametric or not, and if it
contains an unusual label. The leaves of both labeled and unlabeled
fragments refer to the HTTPmethods which can be applied to the
corresponding sub-path.

We extract all fragments from all API trees in the collection and
look for reoccurring ones. To speed up the process, we first match
unlabeled fragments based on their topology, then we further com-
pare the semantic similarity of labeled fragments sharing the same
structure. To do so, we project the labeled fragments l fj into Label
Sequences which enumerate the labels found during the traversal
of each node of the API fragment tree. In other words, we apply
the projection function P : l fj → (TSj ,LSj), to obtain for each la-
beled fragment a Tree StructureTSj (also called unlabeled fragment
fj) and a Labels Sequence LSj . All the resulted output objects are
also serialized as JavaScript Object Notation (JSON) and stored in a
MongoDB database.

3 FRAGMENTS CLUSTERING
3.1 API Fragments Clustering and Selection
Having obtained the set of all labeled API fragments, which in our
collection corresponds to 277’094 entities, we proceed to remove
duplicates and cluster them.

For clustering the fragments, we followed a two-step similarity
checking approach, which consists of exact topologiesmatching and
labels closeness similarity scoring:

(1) first by their common structure (i.e., the unlabeled fragment),
(2) then, we compute the average label semantic similarity for

each cluster of fragments sharing the same structure.

The output of structural clustering consists of a set of clusters
where the elements of each cluster share the same API Structure,
using different labels. We give higher priority to the larger clusters
(more than 40 elements), knowing that the size of the cluster reflects
how common is a specific structure. These Known uses are then con-
sidered as candidate structural pattern primitives. The goal behind
semantically comparing the fragment sharing the same structure
is to find out if there is a common use context of a highly recurring
API Structure.

3.1.1 Structuresmatching. In our approach,we see anAPI fragment
as a sequence of labels LS placed on the nodes of a Tree Structure
TS . Where a node of a TS can be either a path segment or a leaf
representing an HTTPmethod. During our analysis, we decided to
distinguish between three types of path segment: segments contain-
ing a parameter, noted as single word label between { }, segments
that are not containing a parameter, and segments holding labels
with more complex parameter notations, such as the example in
Figure 10, which occurs 222 times. In our comparison approach, we
consider the type of the path segment as part ofTS . Thus, API Frag-
ments in Figure 11 and Figure 10 are detected to be distinct since the
first structural clustering step. In this way, we already distinguish
fragments, which even if they have the same tree topology, have
parameters in different positions along the tree.

Apacta 0.0.1

GETPOST GET

GET

POST

GET

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GETPOST DELGETPUT

GETPOST

DEL

GET

GETPOST

DEL

GET

PUT

GET

DEL

GET

PUT

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GET

GET

GET

GET DELGETPUT GETPOST

DEL

GET

POST

PUT

POST

GET

GET

PUT

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GET

GET

POST

GET

GET

GET

GETPOST DELGETPUT GET

GET

GETPOST

DEL

GET

PUT

GETPOST

DEL

GET

PUT

GET

GET

GET

GETPOST

DEL

GET

PUT

GET

GET

GET GET GET

GET

GETPOST

DEL

GET

PUT

POST

GET

GET

wall_posts/ {wall_post_id}/ wall_comments/

wall_comments/ {wall_comment_id}/

vendor_products/ {vendor_product_id}/

users/ {user_id}/

time_entry_value_types/ {time_entry_value_type_id}/

time_entry_unit_types/ {time_entry_unit_type_id}/

time_entry_types/ {time_entry_type_id}/

time_entry_intervals/ {time_entry_interval_id}/

time_entries/ {time_entry_id}/

stock_locations/ {location_id}/

projects/ {project_id}/

users/ {user_id}/

project_files/ {project_file_id}/

files/ {file_id}/

project_statuses/ {project_status_id}/

products/ {product_id}/

ping/

payment_terms/ {payment_term_id}/

payment_term_types/ {payment_term_type_id}/

materials/ {material_id}/ rentals/

{material_rental_id}/

checkout/

mass_messages_users/ {mass_messages_user_id}/

invoices/ {invoice_id}/

invoice_lines/ {invoice_line_id}/

forms/ {form_id}/

form_templates/ {form_template_id}/

form_fields/ {form_field_id}/

form_field_types/ {form_field_type_id}/

expenses/ {expense_id}/ original_files/ {file_id}/

expense_lines/ {expense_line_id}/

expense_files/ {expense_file_id}/

employee_hours/

currencies/ {currency_id}/

contacts/ {contact_id}/

contact_types/ {contact_type_id}/

companies/ {company_id}/ integration_feature_settings/ {integration_feature_setting_id}/

clocking_records/

{clocking_record_id}/

checkout/

cities/ {city_id}/

22 Feb 2021 - commit #28 154

Figure 9: Visual representation of the Apacta API structure
as a tree of resources and HTTP methods. This API tree in-
cludes many reoccurring subtrees, which we extract as API
fragments (Click for OpenAPI source)

7

https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml
https://raw.githubusercontent.com/roscopecoltran/krakend-admin/f27bc4ee41d133f35301ef2fabf606cdce51b47b/shared/public/downloads/v2/specs/apacta.com/0.0.1/swagger.yaml

EuroPLoP’21, July 7–11, 2021, Graz, Austria

Figure 10: Example of a repetitive fragment with complex
parametric path segments labels

Figure 11: Example of a repetitive fragment with non para-
metric path segments labels

Following our fragmentsTS comparison approach, we extracted,
from a set of 277’094 labeled fragments, 79’728TS unlabeled frag-
ments sharing the same tree structures, considering also the type of
path segment node, and the types of the HTTPmethod in the leaves.
3.1.2 Semantic closeness.

Oftentimes, path segment labels carry some semantic meaning
related to the resource handled by the path. For that reason, we con-
sidered taking into account the labels of the fragments nodes. Doing
so, we involve the semantic context and have a better understanding
of the common usage contexts of a specific fragment.

In our two-step similarity checking approach, we first clustered
the fragments by theirTS , then extracted all ordered sequences of
node labels found for eachTS of the labeled fragment (Figure 12).
Doing so, we obtain a collection of labels sequences for each TS .
The size of the sequence is equal to the number of nodes of theTS ,
excluding the leaves.

To compute the similarities between the labels sequences, we
use spaCy1, an open-source library for Natural Language Process-
ing (NLP) in Python and Cython. In our case, we use a spaCy’s
trained model for English language [20], using the latest version
of the "en_core_web_md" model package, multi-task CNN trained
on OntoNotes, with GloVe vectors trained on Common Crawl for
spaCy.

We distinguish the following types of labels:
(1) Single words (i.e., stream, details, etc as in the example frag-

ment in Figure 11),
(2) composed labels,whichconcatenatesinglewordsusingcamel-

case, or a "-" or a "_" symbol (Figure 42),
(3) unusually long, complex labels (i.e., #x-amz-target=codedeploy

20141006deleteapplication),

1spaCy: https://spacy.io/

Figure 12: Fragments semantic clustering pipeline

We added a formatter to the spaCy’s processing pipeline in order
to cover the different labels types cases we have. We also added a
filter at the end of the pipeline, which has a goal to exclude the labels
that could not be matched to any semantic concept.

We define the distance between two label sequences S = {l1,..,lp }
and S ′ = {l ′1, .., l ′p } as dist(S,S ′) =

p∑
i=1

sim(nlp(li),nlp(l ′i))
p . Where

sim(A,B)=
√∑n

i=1
∑n
j=1(ai j−bi j)2 is theEuclidianDistancebetween

the matrices A = (ai j) and B = (bi j). And where nlp(li) is the vec-
torizer function of a label li in S . We normalize these distances to
values between 0 and 10. As much is d(S,S ′) closer to 0, S and S ′ are
semantically close.

Doing so, within eachTS cluster, we measure the semantic close-
ness of each sequence by calculating a similarity score between the
labels attached to the same nodes of the tree. This score consists of
the distance between the vectors representing the labels sequences
of each fragment. Using Agglomerative Hierarchical Clustering,
we obtain the semantic clusters for each set of structurally similar
fragments, by setting a threshold depending on the similarity score
distribution in eachTS cluster.

3.2 Labels Similarity Results
Whilewedonothave space to include the complete clustering results,
we summarize the results with five metrics (Table 2):

(1) The average distance between each couple of sequences: the
goal of this metric is to depict howmuch are each two labels
sequences are alike or similar. A low averagemeans thatmost
of the labels sequences are composed of semantically close
elements.

(2) Themedian of these distances: themedian gives an idea about
the distribution of the distances. A high median means that
themajority of the labels sequences are not semantically close.

(3) The maximum distance between a couple of sequences.
(4) The number of clusters that sequences were grouped by.
(5) The threshold defining the maximum distances between all

observations of two sets. This value was defines based on the
the distribution of the values in the distance matrix.

8

https://spacy.io/

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, AustriaFromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Primitive Variant/Smell
Labels sequences distances

Clusters Threshold
Average Median Max

Enumerable
Collection P1

GET (P1v1) 3.07 5.87 9.97 218 5
GET/PUT (P1v2) 2.60 5.23 9.01 20 5
PUT/DEL (P1v3) 2.94 5.51 9.03 13 5
GET/PUT/DEL (P1v4) 2.89 5.80 9.79 34 5
GET/POST (P1s1) 3.26 7.53 9.42 14 5
GET/DEL (P1s2) 2.54 5.56 8.65 8 6

Appendable
Collection (P2)

GET/PUT/DEL (P2v1) 2.41 2.16 9.87 24 5
GET/DEL (P2v2) 1.90 0.00 9.86 23 5
GET (P2v3) 3.06 5.58 9.98 52 5
PUT/DEL (P2s1) 2.54 4.98 8.77 24 5
DEL (P2s2) 3.33 6.78 9.48 23 6

Collection (P3)

GET/PUT/DEL/PATCH (P3v1) 1.93 3.06 9.28 19 5
GET/PUT/DEL (P3v2) 2.62 5.02 9.81 120 5
GET/DEL/PATCH (P3v3) 2.74 5.31 9.84 12 5
GET (P3v4) 2.78 5.17 9.98 36 6
PUT/DEL (P3v5) 2.54 4.72 9.91 25 5
GET/DEL (P3v6) 3.07 5.77 9.98 39 6
DEL (P3v7) 2.59 5.34 8.50 39 5
PUT-Only (P3s1) 2.58 5.34 8.50 12 5
GET/PUT (P3s2) 2.32 4.41 9.16 24 5

Mutable
Collection (P4)

GET/PUT/DEL/PATCH (P4v1) 1.22 0.00 8.08 19 4
DEL (P4s1) 2.55 5.49 9.70 10 5
GET/DEL (P4s2) 2.51 0.00 8.93 20 5

Design Smells: Create without Delete, Delete without Create, Ambiguous POST, Ambiguous PUT, Write-only

Table 2: Overview of distances between all the labels sequences of each primitive and its variants/smells. The smells are color-
coded.

(2) Themedian of these distances: themedian gives an idea about
the distribution of the distances. A high median means that
themajority of the labels sequences are not semantically close.

(3) The maximum distance between a couple of sequences.
(4) The number of clusters that sequences were grouped by.
(5) The threshold defining the maximum distances between all

observations of two sets. This value was defines based on the
the distribution of the values in the distance matrix.

Table 2 shows that label sequences in different collections of frag-
ments are semantically similar. For each primitive, we will provide
detailed examples of labels associated with each variant/smell in the
next Section.

4 STRUCTURALAPI PRIMITIVES
Out of the results obtained from the fragmentation and clustering
process, we selected a set of most occurring fragments and classified
them to four primitives (Figure 14), depending on their functionality
based on their structures.

Figure 14: Overview: API Structure Collection Primitives

The context for all pattern primitives is the same: a designer needs
to use an HTTP-based API to provide access to a collection of items
which are stored on the server.

All theprimitives areused to expose in theAPI collectionsof items,
where each collection if identified by a statically-named container re-
source and its items are dynamically addressed within the container
resource.Wedistinguish eachprimitive based onwhich combination
of HTTPmethods are attached to the container resource.

R

container resource
... HTTP methods

{collection item address}
... HTTP methods

The Enumerable Collection (P1) primitive is usedwhen clients
can use the API to only discover the content of the collection by
retrieving a list of their items. The Appendable Collection (P2)
primitive makes it possible for clients to only append items into
the collection exposed by the API. The Collection (P3) primitive
combines both features of the Appendable Collection and the
Enumerable Collection, so that clients may use it to both append
new items and list existing items. Since this primitive is the most
commonly found one, we choose to name it with the simplest and
shortest name, while adding qualifiers to the names of the other
primitives. Finally, the Mutable Collection (P4) primitive extends

9

Table 2: Overview of distances between all the labels sequences of each primitive and its variants/smells. The smells are color-
coded.

Table 2 shows that label sequences in different collections of frag-
ments are semantically similar. For each primitive, we will provide
detailed examples of labels associated with each variant/smell in the
next Section.

4 STRUCTURALAPI PRIMITIVES
Out of the results obtained from the fragmentation and clustering
process, we selected a set of most occurring fragments and classified
them to four primitives (Figure 14), depending on their functionality
based on their structures.

The context for all pattern primitives is the same: a designer needs
to use an HTTP-based API to provide access to a collection of items
which are stored on the server.

All theprimitives areused to expose in theAPI collectionsof items,
where each collection if identified by a statically-named container re-
source and its items are dynamically addressed within the container
resource.Wedistinguish eachprimitive based onwhich combination
of HTTPmethods are attached to the container resource.

R

container resource
... HTTP methods

{collection item address}
... HTTP methods

The Enumerable Collection (P1) primitive is usedwhen clients
can use the API to only discover the content of the collection by
retrieving a list of their items. The Appendable Collection (P2)

primitive makes it possible for clients to only append items into
the collection exposed by the API. The Collection (P3) primitive
combines both features of the Appendable Collection and the
Enumerable Collection, so that clients may use it to both append
new items and list existing items. Since this primitive is the most
commonly found one, we choose to name it with the simplest and
shortest name, while adding qualifiers to the names of the other
primitives. Finally, the Mutable Collection (P4) primitive extends
the Collection with the ability to perform batch operations on
the entire collection (e.g., to delete the entire content or replace the
entire content of the collection).

Within each primitive, we have collected many variants and de-
sign smells depending on which combination of HTTPmethods is
attached to the collection item resource.

In Figure 13, we provide a more detailed overview showing for
each primitive the corresponding variants and design smells. Each
variant and design smell of the same primitive are encapsulated in
a gray frame. We also show how each variant can be obtained by
changing another one with the black and gray arrows. The black
arrows trace the paths that allow moving from a structure primitive
to another by adding an operation on the items of the collection. And
the gray ones are showingwhichmethods are added to the container
resource. In the rest of this section we present overviews focused on
each structural primitive.

9

EuroPLoP’21, July 7–11, 2021, Graz, Austria

Figure 13: Overview: API Structural Primitives and their variants and design smells

Figure 14: Overview: API Structure Collection Primitives

During our analysis, we have also detected some structural design
smells, which we highlight in Figure 13 with colored frames. We
classified the detected smells into the following categories:

Create without Delete: API structures that allow the clients
to create elements from a collection, but do not provide a possibility
to delete elements from it.

Delete without Create: API structures that allow the clients
to delete elements from a collection, but do not provide a possibility
to append elements to it.

Ambiguous POST: API structures that contain a POST opera-
tion on the items of a collection. Is this POSTmethod used to append
items to the collection?

Ambiguous PUT:API structures that provide a PUToperation
on the collection. Is this PUTmethod really used to update thewhole
collection?

Write-Only:API structures that haveno readoperationneither
on the whole collection nor on its items.

In Table 3, we show an overview of the selected collections of
fragments, by listing their occurrences and the number of unique
labels sequences used by the same structures in the same API or
across different ones. We also give an example of the most distinct
sequences fount among the unique labels sequences, in order to
show the extreme use contexts for each structure.

10

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria
FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Primitive Variant Occurrence Size nDLS
Most distant labels sequences

Sequence 1 Sequence 2

Enumerable
Collection P1

GET (P1v1) 1588 4 744 {operations, {operation}} {cidades, {nome}}
GET/PUT (P1v2) 99 5 43 acls, {user} users, {id}
PUT/DEL (P1v3) 40 4 26 {song, {id}} {oauth, {provider}}
GET/PUT/DEL (P1v4) 176 6 71 countries, {country} namespaces, {namespace}
GET/POST (P1s1) 77 5 22 msgs, {username} servers, {framework}
GET/DEL (P1s2) 56 5 26 {serveurs, {id}} {tasks, {task}}

Appendable
Collection (P2)

GET/PUT/DEL (P2v1) 194 6 64 item, {itemid} bucketlist, {id}
GET/DEL (P2v2) 145 5 43 vim, {vim uuid} v1, {album}
GET (P2v3) 202 4 127 {user2, {username}} {disease, {disease}}
PUT/DEL (P2s1) 50 5 31 rulesets, {rulesetName} pelicula, {peliculaId}
DEL (P2s2) 69 4 51 {token, {iat}} {jobs, {id}}

Collection (P3)

GET/PUT/DEL/PATCH (P3v1) 328 8 159 lenses, {key} movies, {movie}
GET/PUT/DEL (P3v2) 1123 7 574 nodes, {ip} tickets, {tid}
GET/DEL/PATCH (P3v3) 232 5 139 rooms, {key} taxrate, {zipcode}
GET (P3v4) 323 5 168 {deposits, {depositor}} {txs, {txid}}
PUT/DEL (P3v5) 169 6 84 pedidos, {numero} countries, {code}
GET/DEL (P3v6) 345 6 187 applications, {appid} caixa, {codigo}
DEL (P3v7) 201 5 87 byon, {id} client, {pubkey}
PUT-Only (P3s1) 78 5 38 {Chems, {chemid}} {users, {userid}}
GET/PUT (P3s2) 63 6 47 manager, {username} pessoas, {idPessoa}

Mutable
Collection (P4)

GET/PUT/DEL/PATCH (P4v1) 74 9 52 workflows, {name} boards, {id}
DEL (P4s1) 48 6 18 progress, {ordinal} beverages, {beverage}
GET/DEL (P4s2) 102 7 56 ciudad, {id} themes, {uuid}

Design Smells: Create without Delete, Delete without Create, Ambiguous POST, Ambiguous PUT, Write-only

Table 3: KnownUses of Selected Fragments: Number of Distinct Label Sequences (nDLS) and their Occurrences within APIs.

Ambiguous PUT:API structures that provide a PUToperation
on the collection. Is this PUTmethod really used to update thewhole
collection?

Write-Only:API structures that haveno readoperationneither
on the whole collection nor on its items.

In Table 3, we show an overview of the selected collections of
fragments, by listing their occurrences and the number of unique
labels sequences used by the same structures in the same API or
across different ones. We also give an example of the most distinct
sequences fount among the unique labels sequences, in order to
show the extreme use contexts for each structure.

The rest of this section details each of the selected primitives
where we present for each primitive the different occurring variants.
For eachvariant of eachprimitivewefiltered themost frequent labels
used by all the variants of a primitive, and sort them alphabetically
to ease the readability of the heatmaps (Tables 5, 7, 10, and 12). In
the Figures, we show the occurrences (counting howmany times a
Labels Sequence is used for the sameTS) of each cluster of labels in
a specific variant/smell.

We also provide a set of guidance tables, based on known uses.
The listed labels are obtained by clustering the Labels Sequences by
the container resource label, as explained in Appendix D.

The goal is to support designers who would like to introduce a
collection for a specific class of items in their API. They can take
advantage of the observations we have collected as they attempt
to look up the collection label and see if there is a non-ambiguous
mapping to a given primitive variant.

Inorder togivean ideaabout theyearlydistributionof thevariants
ages and popularity, we calculate the number of APIs in which a
specific variant appears (Tables 4, 8, 9, 11).

4.1 Enumerable Collection (P1)
Summary. Expose an enumerable set of items within their own con-
tainer resource.

Problem. How to make the collection items discoverable by clients?

Solution. Provide a unique address for each collection item. Allow
clients to read the content of each items applying the GETmethod
to the address of the item. Group together related items under the
same resource path prefix. And, allow clients to enumerate the items
within the collection by applying the GETmethod to the container
resource.

Figure 15: EnumerableCollection -OverviewofVariants and
Design Smells

In Table 4, we can clearly see the increasing usage of the Variants
and Smells in the API collection over time. This increase can be both
because of the yearly distribution of the API specifications gathered
in our data set, and to the popularity the structural primitives gained
through the years.

11

Table 3: KnownUses of Selected Fragments: Number of Distinct Label Sequences (nDLS) and their Occurrences within APIs.

The rest of this section details each of the selected primitives
where we present for each primitive the different occurring variants.
For eachvariant of eachprimitivewefiltered themost frequent labels
used by all the variants of a primitive, and sort them alphabetically
to ease the readability of the heatmaps (Tables 5, 7, 10, and 12). In
the Figures, we show the occurrences (counting howmany times a
Labels Sequence is used for the sameTS) of each cluster of labels in
a specific variant/smell.

We also provide a set of guidance tables, based on known uses.
The listed labels are obtained by clustering the Labels Sequences by
the container resource label, as explained in Appendix D.

The goal is to support designers who would like to introduce a
collection for a specific class of items in their API. They can take
advantage of the observations we have collected as they attempt
to look up the collection label and see if there is a non-ambiguous
mapping to a given primitive variant.

Inorder togivean ideaabout theyearlydistributionof thevariants
ages and popularity, we calculate the number of APIs in which a
specific variant appears (Tables 4, 8, 9, 11).

4.1 Enumerable Collection (P1)
Summary. Expose an enumerable set of items within their own con-
tainer resource.

Problem. How to make the collection items discoverable by clients?

Solution. Provide a unique address for each collection item. Allow
clients to read the content of each items applying the GETmethod
to the address of the item. Group together related items under the
same resource path prefix. And, allow clients to enumerate the items

within the collection by applying the GETmethod to the container
resource.

Figure 15: EnumerableCollection -OverviewofVariants and
Design Smells

20
15

20
16

20
17

20
18

20
19

20
20

P1.s2 0 0 6 6 9 34

P1.s1 0 1 3 7 8 24

P1.v4 0 0 12 23 30 61

P3.v3 0 1 5 3 5 20

P2.v2 1 3 4 11 15 35

P1.v1 7 17 80 86 165 374

Table 4: Yearly distribution of the API specifications where
the Enumerable Collection (P1) variants appear

11

EuroPLoP’21, July 7–11, 2021, Graz, Austria

In Table 4, we can clearly see the increasing usage of the Variants
and Smells in the API collection over time. This increase can be both
because of the yearly distribution of the API specifications gathered
in our data set, and to the popularity the structural primitives gained
through the years.

• Enumerable Collection Variants

For the Enumerable Collection primitive we have identified 2
variants and 3 design smells (Figure 15).

GET (P1.v1). The read-only variant is one of the most occurring
structures, which allows clients only to enumerate the content of
the collection and to read the corresponding items. APIs use it to
publish one immutable set of related items. By setting a threshold of
5 obtained 218 Labels Sequences clusters. Which depicts the variety
of usage contexts of this variant.

According to the whole labels sequences set that we extracted,
we noticed that this read-only structure is widely used for differ-
ent domains. In Table 5, we show some of the labels clusters used
by this variant. We can notice that all the most frequent labels
in the Enumerable Collection (P1) are used by this variant, ex-
cept 3 ones: keys and and episodes , which are used by the variant
GET/PUT/DEL (P1.v4) which allows also to update and delete the
items of the container resource, and client , which is only used by
GET/PUT (P1.v2).

An example of API where this structure primitive is present sev-
eral times, in the Apacta API showed in Figure 9. In this API we can
see clearly the high occurrence of GET (P1.v1) with different labels,
combined with variants of other primitives.

Size: 4 — Occurrence: 1588 — Distinct Labels: 744

Figure 16: Enumerable Collection -GETVariant (P1.v1) Visu-
alization

GET/PUT (P1.v2). This variant allows clients to use the GET and
PUT methods on the collection items. This makes it possible to
read and update the content of individual collection items. This
API structure also appears in Apacta API (Figure 9). Figure 43, is
a use case example of this API structure. The GET operation in
the resource handled by the path /users/id/topics allows the
client to get all the topics of a specific user. The get operation in
the path /users/{id}/topics/{topic_id} has as goal to verify
if a user is following a specific topic. The response is an object of
boolean type. In this case, the PUT operation is for interpolating the
FOLLOW / UNFOLLOW relationship between the user {id} and the
topic {topic_id}.

P
1
.v
1

P
1
.v
2

P
1
.v
3

P
1
.v
4

P
1
.s
1

P
1
.s
2

accounts 6 0 0 2 0 0

api-docs 9 0 0 0 0 0

applications 8 0 0 0 0 0

artifacts 12 0 0 0 0 0

clients 0 0 0 0 17 0

concepts 8 0 0 0 0 0

config schemas 8 0 0 0 0 0

configs 2 8 0 0 0 0

content 16 0 0 0 0 0

currencies 13 0 0 0 0 0

descriptor 10 0 0 0 0 0

devices 8 0 0 8 0 0

documents 13 0 0 0 0 0

email history 9 0 0 0 0 0

episodes 0 0 0 10 0 0

events 29 0 0 0 0 0

files 7 0 0 6 0 0

groups 9 0 0 0 0 0

health profile 8 0 0 0 0 0

health profile answer 8 0 0 0 0 0

health question definition 8 0 0 0 0 0

history 7 0 0 0 0 1

images 9 1 0 0 0 1

instances 1 0 0 0 0 21

items 9 0 0 0 0 0

jobs 2 10 0 0 0 1

keys 0 0 0 11 0 0

locations 24 1 0 0 0 0

manifests 29 0 0 0 0 0

metadata 8 0 0 0 0 1

namespaces 4 3 0 1 0 0

networks 3 0 0 6 0 1

operations 51 0 0 0 5 0

organizations 16 0 0 0 0 0

overview 8 0 0 0 0 0

people 4 0 0 6 0 0

policydefinitions 3 0 0 6 0 0

products 13 1 0 0 0 0

resources 33 0 0 3 0 0

roles 9 0 0 0 0 0

servers 3 0 0 0 17 0

services 16 0 0 0 0 0

shows 5 0 4 6 0 0

tags 8 0 3 0 0 0

tasks 5 0 0 2 0 5

types 26 0 0 0 0 0

users 29 1 4 11 1 1

versions 9 0 0 0 0 1

views 16 0 0 0 0 0

vuln 16 0 0 0 0 0

Table 5: Enumerable Collection (P1) – Labels found in
each variant/smell

Size: 5 — Occurrence:99 — Distinct Labels: 43

Figure 17: Enumerable Collection -GET/PUTVariant (P1.v2)12

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

PUT/DEL (P1.v3). The particularity of this variant is that it allows
to both update and delete items, however, it does not allow the client
to create new items in the collection by using the container resource.
Instead, it still allows them to do so by invoking the PUT method
directly on the items to be created. In this case, clients themselves
should provide the identifiers for the items to be added to the collec-
tion.

Size: 5 — Occurrence: 40 — Distinct Labels: 26

Figure 18: Enumerable Collection - PUT/DELVariant (P1.v3)

This API structure appears one in the TVmaze user API showed
in Figure 42.Where it is used for reading the collection of shows, and
deleting or updating each. Another API example where this struc-
ture appears in Invotra API (Figure 48). In this case, adding a new
user to the users’ collection is possible due to the POST operation of
the path users. However, it seems that the client is not allowed to
add new user memberships to a specific team.While, according to
the descriptions of the operations, it is possible to remove a user’s
membership of the team or update information about his teammem-
bership. Then, how can a team have newmembers? In this case, the
user object schema is having a teams property of array type. Thus,
adding a newmember to a team is performed by means of the PUT
operation provided in the path: /users/{userId}.

GET/PUT/DEL (P1.v4). The main characteristic of this structure
is that it in addition to the GET and PUTmethods it also exposes a
DELETEmethod on the collection items. This way, clients can not
only read andwrite the associated content but can also remove items
from the collection.

Size: 6 — Occurrence: 176 — Distinct Labels: 71

Figure 19: Enumerable Collection - GET/PUT/DEL Vari-
ant (P1.v4)

While in general, it can be useful to allow clients to remove items
from a collection, it is not clear whether an API should support
this for collections whose content can only be enumerated without
providing themeans for the service to mint identifiers for new items.
Instead, new items can only be added by clients as long as they
provide the new item’s identifier.

While this can lead to crashes when multiple clients attempt
to invoke the PUT operation on the same item, we have observed
different semantics for the PUT and DELETEmethods. For example,
some APIs use the DELETE method for something different: task
cancellation. In this case, we assume that the tasks being performed
within the server can be monitored by clients and when necessary
can be interrupted.

For a better understanding, we have extracted the content of the
description field of the DELETEmethod.

Looking at the descriptions of the delete method extracted from
the OpenAPI documents in Table 16 (Appendix B), it is clearly under-
standable that the DELETE operation is not always meant for clients
to delete an item from the collection.

More in detail, in the description D-40, the DELETE method is
allowing the client to delete a person from the list of followed people,
but no append operation is provided. An example of an API where
this fragment appears is in Figure 42. In this API this example, we
look at the fragment with labels sequence S =people,{poeple_id}, in
whichwe cannotice that the following operation is done through the
PUTmethod. In this case,when followingaperson, thisnewfollowed
person is not appended to a collection of followedpeople, but instead,
the followed person is updated through the PUT operation with the
information about a new follower.

Path segment Method Description
people GET List the followed people

{people_id}
GET Check if a person is followed

DELETE Unfollow a person
PUT Follow a person

Table 6: Methods description of a fragment of Enumerable
Collection - GET/PUT/DEL Variant (P1.v4), extracted from
the OpenAPI description of TVmaze user API

• Enumerable Collection Design Smells

GET/POST (P1.s1). Ambiguous POST As opposed to updating
the content of individual items of the previous variants, in this vari-
ant, the API makes it possible to fetch the current state of each item
with GET and invoke some arbitrary operation on each of themwith
POST.

Size: 5 — Occurrence:77 — Distinct Labels: 22

Figure 20: Enumerable Collection - GET/POST Design
Smell (P1.s1)

Coming back to the OpenAPI descriptions of the APIs where
this variant of fragments appears, we extracted the content of the

13

EuroPLoP’21, July 7–11, 2021, Graz, Austria

summary and description fields for the POST method, which we list
in Table 15 (Appendix B). Based on the descriptions, we can detect
two main use cases for the POSTmethods on the collection items:

(1) Appending an item to the collection: in this case placing the
POST operation over the collection items can be seen as a common
mistake.

(2) Updating an attribute of an existing item: in this case the POST
is mistakenly used to perform the role of the PUTmethod.

GET/DEL (P1.s2). Delete without Create
This smell provides access to a collectionwhose items can be read

and deleted, without offering clients the possibility to append new
items.

This smell only appears with 26 distinct labels. In Figure 5, we
can see that it appears 21 times out of 56 with labels represented
by the label instances . This same label appears only once with the
GET(P1.v1)variant.Other labels found inconjunctionwith this smell
(e.g., tasks, jobs) would indicate uses for providing access to server-
side resources which can only bemonitored and eventually removed
by clients, which do not have any control over their lifecycle.

Size: 5 — Occurrence: 56 — Distinct Labels: 26

Figure 21: Enumerable Collection - GET/DEL Design
Smell (P1.s2)

4.2 Appendable Collection (P2)
Summary. Append new items by posting them in the container re-
source

Problem. How to offer clients the ability to add new items into the
collection?

Solution. Allow clients to use the POST method on the container
resource to append new items into the collection. The address of the
newly created itemsmust be returned to the clients, since this pattern
does not feature the ability for clients to enumerate the content of
the collection.

P
2
.v
1

P
2
.v
2

P
2
.v
3

P
2
.s
2

P
2
.s
1

account 1 0 6 0 0

annotations 3 0 0 0 0

annotationsets 3 0 0 0 0

assets 0 0 0 3 0

batch 0 0 2 0 0

bookings 0 1 0 1 0

buy 0 0 2 0 0

campaigns 0 2 0 0 0

cart 0 1 2 0 0

categorias 0 0 0 0 4

category 1 0 0 0 1

client 1 0 1 0 0

cluster 0 2 0 0 0

collections 0 0 3 0 0

comment 0 1 0 1 5

connections 0 0 2 0 0

courses 1 4 0 0 0

datapointers 3 0 0 0 0

deployments 0 1 11 0 0

disease 0 0 5 0 0

distributions 2 0 0 0 0

documents 0 2 0 0 0

employee 0 1 1 0 1

entries 1 0 2 0 0

files 0 1 6 0 0

form fields 0 0 6 0 0

hub 0 2 0 1 0

images 0 0 11 1 0

individuals 3 0 0 0 0

item 1 1 3 0 0

jobs 0 0 1 2 0

labels 0 0 1 5 0

media 0 4 1 0 0

messages 2 1 9 0 0

objectstores 0 0 0 0 8

order 4 78 1 1 1

policy keys 0 0 3 0 0

post 0 0 2 1 1

productos 0 0 0 0 4

products 2 0 2 0 0

provider 2 0 0 0 1

read 0 0 5 0 0

register 11 0 0 0 0

student 1 1 1 0 0

subscriptions 1 0 0 2 0

target 0 0 5 0 0

task 1 0 1 0 1

todo 1 12 1 0 0

token 0 0 1 11 0

user 114 5 11 3 7

wall comments 0 0 6 0 0

Table 7: Appendable Collection (P2) – Labels found in
each variant/smell

• Appendable Collection Variants
The common point between the variants of this primitive is that

theyall only allow the client to appendonacollection, and toperform
different operations on the items. Starting from the variant that
allows all ofGET/PUT/DELoperations, until the one that only allows
reading the items. For this primitive, we have detected a design smell,
where the client is not allowed toperformany readoperation, neither
of the collection nor on its items.

14

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Figure 22: Appendable Collection Overview

20
15

20
16

20
17

20
18

20
19

20
20

P2.s1 0 0 0 4 12 25

P2.s2 2 2 3 4 8 38

P2.v3 1 3 13 20 34 104

P2.v2 5 10 14 16 25 68

P2.v1 4 9 19 25 53 63

Table 8: Yearly distribution of the API specifications where
the Appendable Collection (P2) variants and smells ap-
pear

GET/PUT/DEL (P2.v1). This variant allows clients full control
over the items they have appended to the collection, as they can read,
update and delete them.

Size: 6 — Occurrence: 194 — Distinct Labels: 64

Figure 23: Appendable Collection - GET/PUT/DEL Vari-
ant (P2.v1)

For understanding the reason for the absence of a read operation
on the collection, we extracted natural language descriptions of the
GET operation.Wewant to verify whether the designers mistakenly
considered that the GET operation on the item would serve also for
listing all the content of the collection. In Table 19, we list some of
the summaries and descriptions associated with the GET method.
We can see from the descriptions that the GET operation is indeed
used to retrieve specific elements from the collection.

Figure 45 shows and an example of use of this variant, where it is
combined with the GET/DEL (P2.v2) variant. In this case, the PUT
operation is used to update a sign in record.

GET/DEL (P2.v2). This variant only allows to read or delete indi-
vidual collection items. It occurred 145 times, however with only 43
distinct Labels Sequences.

A concrete usage example of this primitive is in Passman API
(visualized in Figure 46), an open-source developersAPI for Passman
extensions. In the case of this example, the GET/DEL (P2.v2) variant
is used in order to allow uploading and attaching a file to an item
by means of the POST operation in the /file path. The client is
also allowed to delete or get the content of a specific file, using,
respectively the DELETE and GET operations allowed in the path
/file/{file_id}. Another example is in Figure 45, where it is used
beside the GET/PUT/DEL (P2.v1) variant, allowing to to create a
teammember (user) record, to retrieve the information associated
with a user’s account, and finally to delete a team member’s user
record.

Size: 5 — Occurrence: 145 — Distinct Labels: 43

Figure 24: Appendable Collection - GET/DEL Variant (P2.v2)

GET (P2.v3). This variant only allows the client to add elements to
the collection, and then read each one, but it does not provide the
ability to edit or remove items. Collections featuring this primitive
contain resources which are garbage collected on the server-side,
such as jobs, queries, or sessions. Another example is the append-
only shopping cart in which clients can only add items without ever
removing them.

Size: 4 — Occurrence:202 — Distinct Labels: 127

Figure 25: Appendable Collection - GET Variant (P2.v3)

• Appendable Collection Design Smells

PUT/DEL (P2.s1). Write-Only
Instead of a GET operation, this variant introduces a PUT. How-

ever, itdoesnotoccuras frequentlyas thevariantsGET/DEL(P2.v2)and
GET/PUT/DEL (P2.v1).

We have analyzed the 50 occurrences to attempt to determine
how such a write-only API fragment would work since it appears it
is only possible to append new items, update or delete them. Indeed,
no occurrence supports the ability to enumerate the content of the
collection, nor it allows clients to read from its items.

15

EuroPLoP’21, July 7–11, 2021, Graz, Austria

Size: 5 — Occurrence:50 — Distinct Labels: 31

Figure 26: Appendable Collection - PUT/DEL Design
Smell (P2.s1)

DEL (P2.s2). Write-Only
Same as PUT/DEL (P2.s1), this variant does not provide the client

the possibility of performing GET operations. Neither on the con-
tainers nor on the items. It only allows to append new items to the
collection and delete them.

Such unreadable, write-only collection can still be useful, for
example, tomanage asynchronous jobs, or subscriptions ormessages
submitted into the API which can be only canceled from the clients.
Since the collection cannot be enumerated, this works only if the
address of the newly created items is returned to the client who
created it using POST.

Nevertheless, we tag this variant as a smell, because of the strong
limitations imposed by offering a write-only collection.

Size: 4 — Occurrence:69 — Distinct Labels: 51

Figure 27: Appendable Collection - DEL Variant (P2.s2)

4.3 Collection (P3)
Also known as. Enumerable-Appendable Collection

Summary. Use the container resource to enumerate its content and
add new items.

Problem. How to make the collection items discoverable by clients?
How to let clients add items to the collection?

Solution. Group together related items under the same prefix. Allow
clients to enumerate the items within the collection by applying the
GET method to the container resource. Clients can use the POST
method on the same container resource to add new items.

• Collection Variants
We present different variants featuring different method combi-

nations on the collection item, starting from the one having four
methods, all the way to fragments with a single method attached to
the collection item.

In this primitive, we have detected two Design Smells (Figure 28),
both are related to the Create without Delete smell.

Even the simplest variants with only one operation on the item
to delete or update themwould appear to lack the ability to directly

reading individual collection items.While this is the case, as opposed
to the previously discussed Appendable Collection smells, clients
can still fetch the content of the entire collection using the GET
operation provided by the container resource and then extract the
values for individual items from the result.

Figure 28: Collection – Overview of Variants
20
15

20
16

20
17

20
18

20
19

20
20

P3.s2 0 1 1 11 6 30

P3.s1 0 1 6 11 14 17

P3.v7 2 10 7 16 28 84

P3.v6 1 3 33 43 40 134

P3.v5 1 0 12 23 38 76

P3.v4 1 17 33 36 51 112

P3.v3 0 4 10 15 38 75

P3.v2 6 89 53 91 157 287

P3.v1 0 1 8 6 18 101

Table 9: Yearly distribution of the API specifications where
the Collection (P3) variants appear

16

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

P
3
.v
1

P
3
.v
2

P
3
.v
3

P
3
.v
4

P
3
.v
5

P
3
.v
6

P
3
.v
7

P
3
.s
1

P
3
.s
2

accounts 0 6 1 2 1 0 2 0 6

actions 0 8 3 0 0 0 0 0 0

apikeys 0 8 0 0 0 1 2 0 0

applications 2 6 0 0 0 2 0 7 0

articles 0 31 1 0 2 2 0 0 0

audit trails 61 0 0 0 0 0 0 0 0

authorizedcertificates 0 0 13 0 0 0 0 0 0

bookings 0 3 1 0 2 0 6 0 0

books 0 9 1 0 0 2 0 0 0

categories 1 8 1 0 0 2 0 1 0

change logs 61 0 0 0 0 0 0 0 0

cities 0 4 0 0 6 0 0 0 0

client 0 16 1 2 1 1 1 0 1

clusters 1 2 12 0 0 3 0 7 0

collaborators 0 0 0 0 0 10 0 0 0

comments 0 8 1 1 1 3 18 0 2

compositetypes 18 0 0 0 0 0 0 0 0

configs 0 2 0 0 0 0 0 0 10

contacts 0 14 0 0 0 0 0 0 1

credentials 0 0 0 0 1 0 16 0 0

domainmappings 0 0 13 0 0 0 0 0 0

events 1 16 1 0 0 1 1 0 6

example entities 3 11 0 0 0 0 0 0 0

group 0 9 0 1 0 1 0 0 10

images 1 1 0 0 0 14 0 0 2

ingressrules 0 0 13 0 0 0 0 0 0

invoices 2 9 0 0 0 1 0 0 1

item 1 9 2 1 1 1 0 0 0

members 0 5 0 0 0 4 6 0 1

messages 0 2 4 0 0 5 4 0 6

networks 1 0 0 0 0 9 0 0 0

node 0 3 2 0 1 3 0 0 0

note 0 8 2 0 0 0 0 0 0

notifications 0 6 0 1 1 0 0 0 1

order 0 11 1 2 1 4 2 2 8

patient health metric 0 0 0 0 0 0 0 0 9

payments 1 5 3 0 0 0 0 0 2

pets 0 1 1 0 0 4 0 0 12

policies 0 24 1 0 0 0 0 0 0

posts 0 12 1 1 0 3 0 0 2

products 3 23 4 0 1 1 0 1 1

projects 0 24 3 1 1 8 7 8 2

reward 0 0 0 0 0 0 0 0 10

reward earning 0 0 0 0 0 0 0 0 9

roles 1 13 2 2 1 3 0 1 3

rollouts 0 0 0 0 0 0 0 0 10

rules 0 4 1 0 8 8 1 0 8

runs 0 1 2 0 0 0 6 0 0

service-profiles 0 0 0 0 0 6 0 6 0

services 1 10 0 0 0 2 1 0 0

sessions 0 0 4 0 0 7 0 0 2

subscriptions 0 9 1 0 0 8 0 0 1

tags 1 4 3 0 26 0 12 2 1

tasks 2 3 4 1 1 2 0 0 5

tracks 0 8 0 0 1 0 1 0 1

types 8 1 1 0 1 1 0 1 1

users 4 108 10 11 31 19 7 3 30

volumes 0 0 0 0 8 7 0 0 0

Table 10: Collection (P3) – Labels found in each variant/s-
mell

GET/PUT/DEL/PATCH(P3.v1). Thefirstvariant in this collection
is the one providing all of the GET, PATCH, PUT, and DELETE
operations.

Although this variant includes most HTTP verbs and thus is the
most expressive in terms of which operations clients can perform
on collection items, it is far from being the most frequently used
in practice. An example of use of this variant is in ID Vault API (
Figure 47), where it appears 6 times.

Size: 8 — Occurrence: 328 — Distinct Labels: 159

Figure29:Collection-GET/PUT/DEL/PATCHVariant (P3.v1)

GET/PUT/DEL (P3.v2). Fragments of this variant combine both
the POST andGET operations on the collection.Withmore than one
thousand occurrences, this variant (Figure 30) is the most occurring
we have mined, not only within the variants of this collection but
also among all the fragments having more than 3 distinct methods
in their leaves. Several instances of this primitive can be found with
different labels in the Apacta API (Figure 9).

Size: 7 — Occurrence: 1123 — Distinct Labels: 574

Figure 30: Collection - GET/PUT/DEL Variant (P3.v2)

GET/DEL/PATCH (P3.v3). This variant uses a PATCH operation
insteadof thePUTas invariantGET/PUT/DEL.PassmanAPI(Figure46)
is an example of API where this variant appears.

Size: 7 — Occurrence: 233 — Distinct Labels: 139

Figure 31: Collection - GET/DEL/PATCHVariant (P3.v3)

17

EuroPLoP’21, July 7–11, 2021, Graz, Austria

GET (P3.v4). This is the simplest variant of this collection. The
client cannot perform any operation on the collection items, except
to read their content.Wehave found examples of account collections,
whose content cannot be modified by clients. Likewise, this is a com-
mon structure for long-running operations [15], which are started
with a POST request used to transfer the input of the computation,
while the status of the ongoing job and its result can be retrieved
from the corresponding item.

Size: 5 — Occurrence: 323 — Distinct Labels: 168

Figure 32: Collection - GET Variant (P3.v4)

PUT/DEL (P3.v5). This variant makes the client unable to individ-
ually read each item of the collection. However, it is possible to list
them all, insert new items, delete or update them. Examples of such
collectionswith unreadable itemswould contain simple itemswhose
address indicating their identity and existence is sufficient to control
their lifecycle (e.g., using the PUT operation to control the video
or audio track playback). Likewise, to set the quantity of individual
order line items or remove them from the order altogether one does
not need to be able to retrieve any information about them. Also
because such information can be fetched when enumerating the
content of the entire collection.

Size: 6 — Occurrence: 169 — Distinct Labels: 84

Figure 33: Collection - PUT/DEL Variant (P3.v5)

GET/DEL (P3.v6). This variant only allows to read or delete indi-
vidual collection items. This is one of the most frequently found
variants, with a collection storing a wide variety of items. For ex-
ample, once blog posts, comments, or questions are published, they
cannot be updated but just removed. Likewise, it appears there is no
need to update the ingredients of a recipe.

Size: 5 — Occurrence: 345 — Distinct Labels: 187

Figure 34: Collection - GET/DEL Variant (P3.v6)

DEL (P3.v7). This is a simpler variant, where it is possible to the
client to list the elements of the collection and insert elements into
it. Once the items have been added, it is only possible to remove
them. In addition to bookings, this variant has been frequently used
for collections of blog post comments, product reviews, or favorite
bookmarks, whose content can be shownwhen retrieving the entire
collection, but for moderation purposes, it may be necessary to be
able to remove individual items.

Size: 5 — Occurrence: 201 — Distinct Labels: 87

Figure 35: Collection - DEL Variant (P3.v7)

• Collection Smells

PUT-Only (P3.s1). Create without Delete
This smell provides only one operation to update individual items

of the collection, but lacks the affordance for deleting individual
items. This is used with collections of items whose state should be
controlled by clients, for example to configure or simply switch on
or off devices, gateways or services through a management API.

Size: 5 — Occurrence: 78 — Distinct Labels: 48

Figure 36: Collection - PUT-Only Design Smell (P3.s1)

18

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

GET/PUT (P3.s2). Create without Delete
Also, this smell does not allow clients to delete an item from the

collection, however it allows them to insert items, read them and
update them.

It has been used to design APIs which provide access to collec-
tions of users, user accounts, customers, employees, or withdrawals.
These are resources which once they are created may need to be pre-
served forever for legal reasons, due to data preservation or retention
regulations.

Size: 6 — Occurrence: 63 — Distinct Labels: 47

Figure 37: Collection - GET/PUTDesign Smell (P3.s2)

4.4 Mutable Collection (P4)
Summary. Replace the content of the collection (PUT) or clear the
entire content of the collection (DELETE)

Problem. How to let clients bring thewhole content of the collection
to a known state?

Solution. Add DELETE or PUTmethod to the container resource.

Figure 38: Mutable Collection (P4) Overview

20
15

20
16

20
17

20
18

20
19

20
20

P4.s2 0 2 5 8 17 29

P4.s1 0 1 0 4 2 17

P4.v1 0 1 2 1 5 29

Table 11: Yearly distribution of the API specifications where
theMutable Collection (P4) variants and smells appear

• Mutable Collection Variants
The twovariantswithPUTdonot really seem tobeused to replace

the content of the entire collection (only a few exceptions). Instead,
the PUTmethod is used to edit or update individual items, addressed
by a query parameter that identifies the item to be replaced. (Query
parameters are not shown in the figure).

P
2
.v
1

P
2
.v
2

P
2
.v
3

P
2
.s
2

P
2
.s
1

account 1 0 6 0 0

annotations 3 0 0 0 0

annotationsets 3 0 0 0 0

assets 0 0 0 3 0

bookings 0 1 0 1 0

buy 0 0 2 0 0

cart 0 1 2 0 0

categorias 0 0 0 0 4

category 1 0 0 0 1

collections 0 0 3 0 0

comment 0 1 0 1 5

courses 1 4 0 0 0

datapointers 3 0 0 0 0

deployments 0 1 11 0 0

disease 0 0 5 0 0

employee 0 1 1 0 1

entries 1 0 2 0 0

experiments 0 0 2 0 0

files 0 1 6 0 0

form fields 0 0 6 0 0

governance 0 0 2 0 0

hub 0 2 0 1 0

images 0 0 11 1 0

individuals 3 0 0 0 0

inventory 0 0 2 0 0

item 1 1 3 0 0

jobs 0 0 1 2 0

labels 0 0 1 5 0

media 0 4 1 0 0

messages 2 1 9 0 0

objectstores 0 0 0 0 8

order 4 78 1 1 1

policy keys 0 0 3 0 0

post 0 0 2 1 1

productos 0 0 0 0 4

products 2 0 2 0 0

provider 2 0 0 0 1

read 0 0 5 0 0

register 11 0 0 0 0

student 1 1 1 0 0

subscriptions 1 0 0 2 0

target 0 0 5 0 0

task 1 0 1 0 1

todo 1 12 1 0 0

token 0 0 1 11 0

traces 0 0 4 0 0

update-requests 0 3 0 0 0

user 114 5 11 3 7

wall comments 0 0 6 0 0

Table 12: Mutable Collection (P4) – Labels found in each
variant/smell

GET/PUT/DEL/PATCH(P4.v1). Thisvariantprovidesonlyadelete
operation on the collection. This variant occurs 74 times. It provides
besides the DELETE and GET operations on the collection items,
also PUT and PATCH operations. The second label for all the labels
sequences is {name} except one sequence S = {boards , {id}}

19

EuroPLoP’21, July 7–11, 2021, Graz, Austria

For verifying the purpose of use of the DELETEmethod over the
collection, we have extracted the descriptions associated with that
method in theOpenAPI specificationof theAPIswhere that fragment
occurs (Table 17). Indeed, in this case, the DELETE operation is used
to delete to the whole collection. This "DELETE all" variant could be
promoted to a separate primitive named ”Erasable Collection”.

Size: 9 — Occurrence: 74 — Distinct Labels: 52

Figure 39: Mutable Collection - GET/PUT/DEL/PATCH Vari-
ant (P4.v1)

• Mutable Collection Design Smells

DEL (P4.s1). Ambiguous PUT This structure provides both read
and append operations over the collection, in addition to a PUT
operation.While the only operation that the client can perform over
the collection items is a delete. For verifying the real purpose behind
having a PUT operation over the collection resource we extracted in
Table 20 the descriptions associatedwith thismethod in theOpenAPI
documents. The text shows that, in reality, in almost all cases, the
PUT is used to update an item of the collection. The address of the
item is provided as a request parameter, as opposed to using the
resource path as withmost other primitives. Only in a few cases, it is
actually used as one would expect, for updating the whole collection
with a single batch operation to replace its content (Example D-13).

Size: 6 — Occurrence: 48 — Distinct Labels: 18

Figure 40: Mutable Collection - DEL Design Smell (P4.s1)

GET/DEL (P4.s2). Ambiguous PUT
The fragments of this variant combine all of GET, PUT and POST

operations on the collection. An example of the most occurring
fragment in this variant is in Figure 41. This fragment occurs 102
times with 56 distinct Label Sequences.

Also, in this variant the PUTmethod on the container resource
is used mostly to update the content of individual items (Table 18),
thus leading to some ambiguity as it should have been associated
with the collection item resource.

Figure 44 show an example of APIwhere this variant is used twice.

Size: 7 — Occurrence: 102 — Distinct Labels: 56

Figure41:MutableCollection-GET/DELDesignSmell (P4.s2)

5 FROMPRIMITIVES TO LARGER
STRUCTURES ANDAPI RESPONSIBILITY
PATTERNS

This section gives two examples of how the mined primitives pre-
sented in theprevious sectionscanbeusedduringAPIdesignandAPI
reviews. First,wediscuss primitive composition.Next,webrieflyout-
line how the structural primitives from this paper relate to previous
work on API design patterns and interface description languages.

5.1 Composing Primitives
The basic collection primitives can be composed to form larger API
structures in two ways:

(1) Unrelated collections can be added to the API by adding the
corresponding container resource on the same level as shown
in the fragments of Table 13;

(2) Relatedcollectionscanbenested insideoneanother,byadding
a sub-container resource within each item of the main collec-
tion, as shown in the fragment of Table 14.

In general, we found that both side-by-side composition and nest-
ing can be used together in the same API. The Invostra API shown
in Figure 48 is an example of an API entirely composed of two primi-
tives.

5.2 Relation to Architectural Patterns and
Interface Description Languages (IDLs)

In the patterns community, technology- and platform-neutral inter-
face representation and service design patterns have beenmined and
published. The Microservice API Patterns (MAP) language [29], for
instance, focuses on the design of remote APIs — including but not
limited to service-oriented architectures. MAP has two categories
that complement the API primitives and fragments carved out in
this paper, structure [30] (of request and response message represen-
tations, not HTTP resource tree structures as covered in this paper)
and architectural responsibility [26].

The HTTPmethods found in the resource trees in Sections 2, 3,
and 4 map to the MAP language as this:

• HTTP GETmethods are "Retrieval Operations"[26].
• HTTP POSTs can be "State Creation Operations" but also
"State Transition Operations" (partial update variant) [26].

• HTTP PUTs are "State Transition Operations" (full replace-
ment variant).

• PATCHes correspond to "StateTransitionOperations" (partial
update variant).

• DELETEmethods are represented as variants of State Transi-
tion Operations.

20

https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/RetrievalOperation
https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/StateCreationOperation
https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/StateTransitionOperation

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Table 13: API Fragments Composing the Read-only Collection and the Collection primitives side by side

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Table 13: API Fragments Composing the Read-only Collection and the Collection primitives side by side

2015 2016 2017 2018 2019 2020

0

5

10

0 0

3
2

1

8

A
P
Is

w
it
h
fr
a
gm

en
t

Size: 12 — Occurrence: 33 — Distinct Labels: 12

Label clusters of sample known uses:
(O: Occurrence, C:Cohesion)

Cluster Label1 Label2 Label3 Label4 O C
C1 applicants {id} events {id} 2 8.33

users {id} teams {id} 1 8.16
users {id} tasks {id} 1 8.33
дst {дst_id} base_slice_des {id} 1 2.47
application−templates {id} applications {id} 1 4.08

C2 contact_types {contact_type_id} contacts {contact_id} 6 8.04
f orm_templates { f orm_template_id} f orms { f orm_id} 6 8.16
time_entry_intervals {time_entry_interval_id} time_entry_types {time_entry_type_id} 6 8.04
time_entry_value_types {time_entry_value_type_id} users {user_id} 6 8.04

C3 resources {location} f unction { f unc_id} 1 2.66
C4 cookinдs {uuid} proдrams {uuid} 1 8.04

Table 14: API Fragments Composing the Read-only Collection primitives with nesting

2015 2016 2017 2018 2019 2020

0

20

40

60

80

0 0 0 2 3

25

A
P
Is

w
it
h
fr
ag
m
en
t

Size: 8 — Occurrence: 32 — Distinct Labels: 13

Label clusters of sample known uses:
(O: Occurrence, C:Cohesion)

Cluster Label1 Label2 Label3 Label4 O C
C1 companies {company_id} inteдration_f eature_settinдs {inteдration_f eature_settinд_id} 5 6.66

identity−classes {identityClassID} levels {identityLevelID} 1 7.44
C2 BRK_waardelijsten {waardelijstidenti f icatie} waarden {code} 2 4.98

tabellen {tabelidenti f icatie} waarden {code} 2 5.57
C3 components {component} resource−manaдers {resource−manaдer } 2 6.05
C4 stations {stationId} history {columnName} 1 5.65
C5 entities {entityName} views {viewName} 3 7.64
C6 countries {countryCode} subdivisions {subdivisionCode} 1 8.05

21

Table 14: API Fragments Composing the Read-only Collection primitives with nesting

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

Table 13: API Fragments Composing the Read-only Collection and the Collection primitives side by side

2015 2016 2017 2018 2019 2020

0

5

10

0 0

3
2

1

8

A
P
Is

w
it
h
fr
a
gm

en
t

Size: 12 — Occurrence: 33 — Distinct Labels: 12

Label clusters of sample known uses:
(O: Occurrence, C:Cohesion)

Cluster Label1 Label2 Label3 Label4 O C
C1 applicants {id} events {id} 2 8.33

users {id} teams {id} 1 8.16
users {id} tasks {id} 1 8.33
дst {дst_id} base_slice_des {id} 1 2.47
application−templates {id} applications {id} 1 4.08

C2 contact_types {contact_type_id} contacts {contact_id} 6 8.04
f orm_templates { f orm_template_id} f orms { f orm_id} 6 8.16
time_entry_intervals {time_entry_interval_id} time_entry_types {time_entry_type_id} 6 8.04
time_entry_value_types {time_entry_value_type_id} users {user_id} 6 8.04

C3 resources {location} f unction { f unc_id} 1 2.66
C4 cookinдs {uuid} proдrams {uuid} 1 8.04

Table 14: API Fragments Composing the Read-only Collection primitives with nesting

2015 2016 2017 2018 2019 2020

0

20

40

60

80

0 0 0 2 3

25

A
P
Is

w
it
h
fr
ag
m
en
t

Size: 8 — Occurrence: 32 — Distinct Labels: 13

Label clusters of sample known uses:
(O: Occurrence, C:Cohesion)

Cluster Label1 Label2 Label3 Label4 O C
C1 companies {company_id} inteдration_f eature_settinдs {inteдration_f eature_settinд_id} 5 6.66

identity−classes {identityClassID} levels {identityLevelID} 1 7.44
C2 BRK_waardelijsten {waardelijstidenti f icatie} waarden {code} 2 4.98

tabellen {tabelidenti f icatie} waarden {code} 2 5.57
C3 components {component} resource−manaдers {resource−manaдer } 2 6.05
C4 stations {stationId} history {columnName} 1 5.65
C5 entities {entityName} views {viewName} 3 7.64
C6 countries {countryCode} subdivisions {subdivisionCode} 1 8.05

2121

EuroPLoP’21, July 7–11, 2021, Graz, Austria

The remaining operation pattern fromMAP, "Computation Func-
tion", can be mapped to HTTP GET (if its request parameters are
simple) or POST (if request parameters are complex).

The collection primitives that we derived from URI structures
in Section 4 correspond to the MAP endpoint pattern "Information
Holder" and its specializations[27]:

• "Master Data Holders" expose many GET retrievals and only
a few bulky create POSTs and update PUTs. They usually are
enumerable, and also appendable (at least for certain clients).

• "Operational Data Holders" typically are Enumerable and
Appendable Collections, often also Mutable Collections.

• "Reference Data Holders" are read-only and therefore Enu-
merable Collections.

• "Data Transfer Resources" are Mutable Collections decou-
pling multiple application clients.

• A set of related "Link Lookup Resources" forms a Collection
as well; each item in such collection is mutable and so is the
entire collection.

Microservice Domain-Specific Language (MDSL)[10] is an emerg-
ing abstract service contract language that exposes theMicroservice
API (MAP) patterns used above as decorators. As an example, let us
model the example from Section 2 in MDSL (including the data con-
tracts specifying request parameters and response representations,
as well as error reports):
API description ApactaAPI version "v1"
overview "See previous paper sections and APIs.guru"

data type CityCollection {
"data":City*,
"pagination":PaginationDetails,
"success":Metadata<bool>}

data type City {
"created":Metadata<string>,
"deleted":Metadata<string>,
"id":ID<string>,
"modified":Metadata<string>,
"name":Data<string>,
"zipCode":Data<int>}

data type PaginationDetails {
"count":Metadata<int>,
"current_page":ID<string>,
"has_next_page":Metadata<bool>,
"has_prev_page":Metadata<bool>,
"limit": Metadata<int>,
"page_count":Metadata<int>}

data type ErrorNotFound {
"data": {
"code":Data<int>,
"message":Data<string>,
"url":Link},

"success":Metadata<bool>}

endpoint type CityEndpoint

serves as REFERENCE_DATA_HOLDER and COLLECTION_RESOURCE
exposes
operation getListOfCities
with responsibility RETRIEVAL_OPERATION
expecting payload "zipCode":Data<string>?
delivering payload CityCollection
reporting error searchFailed "404": ErrorNotFound

operation getCityDetails
with responsibility RETRIEVAL_OPERATION
expecting payload "cityId":ID<string>
delivering payload City
reporting error noSuchCity "404": ErrorNotFound

In MDSL, such abstract service contract, possibly discovered via
the the stepwise fragments and primitives mining approach estab-
lished in previous sections, can be translated to not only to HTTP
but also gRPC, GraphQL schemas, and other IDLs. The translation
to an HTTP resource API is not straightforward and therefore ben-
efits from an explicit binding (defaults exist, but usually are not
sufficient a) to establish resource trees that contain parametric path
segments and b) tomap endpoints that containmore operations than
the unified verb interface of HTTP can bear):
API provider CityEndpointProvider
offers CityEndpoint
at endpoint location "http://tbc.tbc.tbc:8080"
via protocol HTTP binding
resource CityCollection at "/cities"
operation getListOfCities to GET
element "zipCode" realized as QUERY parameter

report searchFailed realized as 404 with "Not found"
resource CityDetails at "/cities/{cityId}"
operation getCityDetails to GET
element "cityId" realized as PATH parameter

report noSuchCity realized as 404 with "Not found"

The above specification snippets merely demonstrate that it is
feasible to model HTTP resource APIs in MDSL and to leverage the
primitive names from previous sections as well as MAP decorators
while doing so. A thorough introduction to MDSL can be found in
[10], and the language reference is available at https://microservice-
api-patterns.github.io/MDSL-Specification.

6 RELATEDWORK
6.1 Model Clustering
In our work, we analyze and mine a large data set of real-world
OpenAPI specifications. We extracted selected building blocks from
these specifications, focusing on the resource URI tree structures
andHTTPmethod verbs in particular.We cluster thesemodel blocks
both structurally and semantically. Hence we have the same goals as
the authors of [4], but in a different context. This paper presented an
approach for clusteringmodelsusingn-grams inorder to incorporate
the structural context of the models in this task, and also to see the
impact of using n-grams on the resulted clusters. They applied the
approach on a dataset of Ecoremetamodels collected fromAtlanMod
Metamodel Zoo using different sizes of n-grams, where they found
that the clustering accuracy does not increase monotonically along
with increasing the size of the n-grams. In our case, we involve all

22

https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/ComputationFunction
https://microservice-api-patterns.org/patterns/responsibility/operationResponsibilities/ComputationFunction
https://microservice-api-patterns.github.io/MDSL-Specification
https://microservice-api-patterns.github.io/MDSL-Specification

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

the label sequences extracted from fragmentsmodels in the semantic
clustering task, except the names of themethod, aswe consider them
part of the structure rather than being part of the semantic context.

6.2 Structural Analysis ofWeb APIs
Many works tried to statically extract structural characteristics and
functional properties of APIs from their textual descriptions (both
informal or formal documentation). Similar to our approach, in [8],
the authors performed a structural analysis over 286 real-world
publicly available API specifications (retrieved from https://apis.
guru). The authors defined a set of quantitative metrics related to
the resources and the HTTP methods supported by the API and
identified the challenge of extracting recurring API fragments.

An earlier study [12] manually collected and analysed a set of 222
nonmachine-readable publicly-availableAPIs descriptions gathered
from https://www.programmableweb.com by selecting randomly
APIs from each category, hence covering 18% of the APIs listed on
the website at that time.

From it, Maleshkova. M et al. [12] extracted some metrics such
as type of Web API, input parameters, output formats, invocation
details and if the API has complementary documentation. While [8],
and [12] focused more on metrics extraction and providing static
results about the sample under study, the authors of [13] performed
an in-depth analysis in order to detect five REST design patterns and
eightanti-patterns.Todoso, theydefinedand implementeddetection
heuristics. Likewise, the authors of [19] also focused on verifying
the compliance of REST APIs with REST constraints. However, the
analysis presented in [19] was performed over a large data set of
78GB of HTTP requests corresponding to one full day of Mobile
Internet traffic, collected by Italy’s biggest Mobile Internet provider.
This work reached the conclusion that only a few of the analyzed
APIs comply with the best practices and constraints of the REST
architectural style.

[16] is another work questioning the design quality of web APIs,
focusing mainly on REST APIs for cloud computing. They defined a
catalog of 73 best practices in the design of REST APIs, in terms of
understandability and reusability, starting from a literature review.
And they applied it over a set of well-known APIs in the Cloud
Computing area, where they found that Google Cloud follows 66%
(48/73), OpenStack follows 62% (45/73), and OCCI 1.2 follows 56%
(41/73) of their best practices.

While these works focus on evaluating the quality of the design
of different Web APIs collections, our approach is one of the first
systematic and quantitative studies to recover common structural
design decisions adopted byWeb APIs creators.

More patterns for various styles of distribution have been mined
previously, includingMessagingPatterns [9],RemotingPatterns [23],
Patters of Enterprise Application Architecture [6], and Service De-
sign Patterns [5]. Many of these works discuss APIs, interface rep-
resentation, and service design in the particular field of distributed
system technologies and architectures they focus on.

7 THREATS TOVALIDITY
Basing empirical studies on resources collected for public reposi-
tories shared publicly on version control system is prone to error,
because of the fact that not all what is shared is accurate. During

our analysis, we encountered 2534 (38,28%) invalid OAS documents,
which contain errors related to the conformity to the OpenAPImeta-
model. In this work, we transformed the exact content of the OAS
models into our API tree model, which also reflects the errors that
may be encountered in the OAS document. Such errors may have
reduced the number of occurrences of some structures, as the ones
containing mistakes can’t be matched to other error-free structures.

The study performed in this work is based on a data set of OAS
documentsmined fromGitHub. To avoid having a biased data set full
of duplicates, we only inserted in the OAS DB distinct documents.
However, there can be forks that did not introduce changes to the
structure of the API, which could have inflated the values of the
occurrence and the popularity metrics of some fragments.

While not all OAS documents we found on GitHub describeWeb
APIs offered in production, including partially developed artifacts
in our analysis can still provide evidence of reuse of common API
fragments.

8 CONCLUSION
In this paper, we presented a data-centric pattern mining approach.
We applied it to find recurring primitive structures withinWeb API
descriptions.

To do so, we extracted recurring fragments from a large collection
of OpenAPI specifications gathered from open source repositories.
Reflecting the hierarchical nature of HTTP-based APIs, these frag-
ments are represented as trees. These trees are built out of resource
identifiers; they canbe traversed toobtain all paths that arepresent in
the original OpenAPI specification. The leaves of the API trees refer
to the HTTPmethods that invoke the corresponding operations.

From a population of thousands of fragments, we selected those
that a) frequently occur, b) have a relatively small size, and c) are
centered around the notion of resource collection. As shown in
Figure 14, we distinguish the following cases a) collections only offer
operations on their items or on the collection level as well, b) their
content can be enumerated, new items can be created, and/or both
enumeration and creation are supported, and c) batch removal and
update are provided.

For every primitive, we presented a selection of variants together
with the corresponding label clusters and, in somecases, descriptions
associated with the operations. A few variants can be also seen as
design smells, for instance, if they use the HTTPmethod semantics
incorrectly or inconsistently.

Our results are a collection of pattern primitives, which can be
(andhavebeen) composed tobuild largerAPI structures. For instance,
this becomes evident when connecting the syntactical patterns that
we mined here automatically with semantic architectural patterns
previously mined manually by knowledge engineers[26, 27]. We
merely gave the first examples of primitive composition in this paper,
and only outlined these connections; in our future work, we plan to
investigate these topics more thoroughly.

ACKNOWLEDGMENTS
We are grateful for the shepherding by Stefan Sobernig and for the
constructive suggestions for improvement by the writers’ work-
shop participants. This work was supported by the API-ACE project,

23

https://apis.guru
https://apis.guru
https://www.programmableweb.com

EuroPLoP’21, July 7–11, 2021, Graz, Austria

funded by SNF project nr.184692 and FWF (Austrian Science Fund)
project I 4268.

APPENDICES
We attach to this paper four appendices with additional information
regarding:

• Tree visualizations of some real-world known uses of the
pattern primitives variants in Appendix A, using the notation
described in Table 1.

• API Fragments overview in Appendix C, we plot the differ-
ent correlations: Fragment size vs. Occurrences, Number of
unique label combinations vs. Occurrences and Fragment size
vs. Number of unique label combinations.

• Textual descriptions of some HTTPmethods in selected vari-
ants in Appendix B, extracted from the original specification
of the APIs where a specific variant or smell appears.

• Most frequent labels, for each primitive variants and smells
in Appendix D.

A API TREE VISUALIZATIONS
Thisappendixcontainsvisualizationof somerealworldAPIs selected
as examples for this study. They are the APIs where some variants
and smells of the primitives we have described in Section 4 can be
found with high occurrences.

A.1 TvMaze user API
In the TvMaze API2 we can find six occurrences of Enumerable
Collection - GET/PUT/DEL Variant (P1.v4), combined with one read
operation in the path /vote/shows.

Figure 42: Tree visualisation for the TVmaze user API
(click for OpenAPI source)
2https://static.tvmaze.com/apidoc/

A.2 Columba API
The Columba API 3 uses tree instances of the GET (P1.v1) variant
and one of the GET/PUT (P1.v2) variant.

Figure 43: Tree Visualization of Columba API

A.3 AnyPay API
AnyPay service targets parents with children doing payments. It is
an example of usage of the GET/DEL (P4.s2) variant.

Figure 44: Tree visualization of AnyPay API

3https://github.com/columbasms/columbasms.github.io
24

http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=tvmaze.json
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=tvmaze.json
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=tvmaze.json
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=columba.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=columba.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=anypay.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=anypay.yaml

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

A.4 API for the COVID-19 Tracking QRCode
Signin Server

This is an API for the COVID-19 Contact Tracing QRCode Signin
Server. It combines the GET/DEL (P2.v2) and GET/PUT/DEL (P2.v1)
variants of the Appendable Collection (P2) primitive with a set of
paths with a unique method (POST or GET).

Figure 45: Tree visualization of an API for the COVID-19
Tracking QRCode Signin Server

A.5 PassmanAPI
The Passman API 4 combines all of the GET/PUT/PATCH (P3.v3)
and GET/DEL (P2.v2).

Figure 46: Tree Visualization of PassmanDevelopers API

4https://github.com/nextcloud/passman#api

A.6 ID Vault API
This is an API example where the Collection - GET/PUT/DEL/-
PATCHVariant (P3.v1) in appearing several times, combined with
one use of GET/PUT/DEL (P3.v2) variant.

Figure 47: Tree Visualization of ID Vault API

A.7 Invotra API
TheInvotraAPI5 canbesimplyseeandacombinationof GET/PUT(P3.s2)
(occurs twice) and PUT/DEL (P1.v3). It is an example in which we
can see both ways of primitives composition described in Section 5.1

5https://github.com/invotra/api
25

http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=passman.yaml
http://api-ace.inf.usi.ch/openapi-to-tree/europlop-examples?api=passman.yaml

EuroPLoP’21, July 7–11, 2021, Graz, Austria

Figure 48: Invotra API Tree Visualization

B EXTRACTEDDESCRIPTIONS OFHTTP
METHODS

This appendix contains tables for some selectedmethods description,
used to verify the Design Smells discovered in our study. We detect
a design smell when the natural language descriptions associated
with the API feature are not consistent with the standard semantics
of the chosen HTTPmethod.

B.1 Enumerable Collection

Table 15: Extracted description of the POSTmethod for Enu-
merable Collection - GET/POSTDesign Smell (P1.s1)

(1) Generates customized software development kit (SDK) and
or tool packages used to integrate mobile web or mobile app
clients with backend AWS resources

(2) "Write a range of table elements"
(3) Alert about something
(4) Builds templatedversionsof thechallenge-Uses theflag format

and seed to template out a new version of the challenge This
may take a signficant amount of time-

(5) Create a deployment request
(6) Create a new user in system
(7) Generate token for valid user
(8) Perform pruning on input resource name
(9) Post message by username- Creates a message with the user-

name as author
(10) Save a new revision of a page given in HTML format
(11) Set automation state- Set automation state for the given au-

tomation type
(12) Sets the value of a float variable
(13) Sets the value of a string variable
(14) Sets the value of an integer32 variable
(15) This endpoint returns the result of executing this operation
(16) This endpoint returns the result of executing this test
(17) Upload an Attachment- Upload an Attachment-

Table 16: Content of the description field of the DELETE
method of the variant GET/PUT/DEL (P1.v4)

(1) Close an existing position
(2) Delete Link-Will not delete the target object
(3) Delete a contact device for a user Delete a contact device for a

user
(4) Deletes the given device, and invalidates any access token

assoicated with it
(5) Delete a directory tenant under a resource group
(6) Delete a node- Remove the node identified by id A node can

only be deleted if it is currently offline
(7) Delete a node- Remove the node identified by id A node can

only be deleted if it is currently offline and does not host any
master deployments

(8) Delete file- Delete file uploaded to a project fromwall post or
form

(9) Delete maintenance configuration
(10) Delete mock definition
(11) Delete snapshot repository- Deletes a snapshot repository

configuration by name
(12) Delete the scheduled override assignment- Delete the sched-

uled override assignment
(13) Deletes a policy definition at management group level
(14) Deletes a policy definition
(15) Deletes a product package
(16) Deletes a server communication link
(17) Deletes a user from the list of registered users
(18) Deletes an acquired plan
(19) Deletes an existing server Active Directory Administrator
(20) Deletes single user
(21) Deletes specified file container- Delete an existing file

container-
(22) Deletes specified quota- Delete an existing quota
(23) Deletes the MariaDB Server key with the given name
(24) Deletes the MySQL Server key with the given name
(25) Deletes the PostgreSQL Server key with the given name
(26) Deletes the log profile-
(27) Deletes the specified Azure key vault-
(28) Deletes the specified application security group
(29) Deletes the specified public IP address-
(30) Remove a CIDRMap
(31) Remove a Geographic Map
(32) Remove a Property
(33) Remove a Resource
(34) Remove a single task
(35) Remove an episode vote
(36) The operation to delete a container service
(37) Unfollow a network
(38) Unfollow a person
(39) Unfollow a show
(40) Unfollow a webchannel
(41) Unmark an episode
(42) delete an Ad- you must own the Ad and be logged in to delete

an Ad. Deleting an Adwill also erase al pictures uploded to the
API linked to it

26

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

B.2 Mutable Collection (P4)

Table 17: Example of extracted description for the DELETE
method of the variant GET/PUT/DEL/PATCH (P4.v1)

(1) Delete a collection of CDI objects
(2) Delete a collection of CDIConfig objects
(3) Delete a collection of DataVolume objects
(4) Delete a collection of VirtualMachine objects
(5) Delete a collection of VirtualMachineInstance objects
(6) Delete a collection of VirtualMachineInstanceMigration ob-

jects
(7) Delete a collection of VirtualMachineInstancePreset objects
(8) Delete a collection of VirtualMachineInstanceReplicaSet ob-

jects
(9) Delete all
(10) delete collection of AerospikeCluster
(11) delete collection of AerospikeNamespaceBackup
(12) delete collection of AerospikeNamespaceRestore
(13) delete collection of Alb
(14) delete collection of AppBinding
(15) delete collection of AuditRegistration
(16) delete collection of Branch
(17) delete collection of Bundle
(18) delete collection of Certificate
(19) delete collection of Cluster
(20) delete collection of ClusterAuthInfoTemplate
(21) delete collection of ClusterInfo
(22) delete collection of ClusterUserAuth
(23) delete collection of ConfigMap
(24) delete collection of Credential
(25) delete collection of Dashboard
(26) delete collection of Event
(27) delete collection of Ingress
(28) delete collection of KubeDBOperator
(29) delete collection of Message
(30) delete collection of MessagingService
(31) delete collection of Pipeline
(32) delete collection of PullRequest
(33) delete collection of Repository
(34) delete collection of S2iBuilder
(35) delete collection of S2iBuilderTemplate
(36) delete collection of S2iRun
(37) delete collection of Secret
(38) delete collection of Snapshot
(39) delete collection of StashElasticsearch
(40) delete collection of StashMariaDB
(41) delete collection of StashMongoDB
(42) delete collection of StashMySQL
(43) delete collection of StashPerconaXtraDB
(44) delete collection of StashPostgres
(45) delete collection of StashRedis
(46) delete collection of TFJob
(47) delete collection of Tag
(48) delete collection ofWorkflow

Table 18: Descriptions for the PUT method of variant
GET/DEL (P4.s2)

(1) Actualiza un evento
(2) Actualiza un libro
(3) Actualizar inmueble - Actualizar un inmueble de la API
(4) Edit a floor
(5) Edit a stack
(6) Return the updated user
(7) Update Book details - Update Book details
(8) Update CampaignRecipient
(9) Update CampaignSettings
(10) Update ListCampaignDefaults
(11) Update ListContact
(12) Update a existing FX order not matched yet, on the market

place
(13) Update an existing FX order
(14) Update a list - Update a List
(15) Update a song - Update a song
(16) Update an event - Update an event
(17) Update an existing account
(18) Update an existing blog - API Endpoint to update a blog
(19) Update an existing building MAP in database
(20) Update an existing conversation
(21) Update an existing deluge
(22) Update an existing payment-instruction not settled yet
(23) Update an existing payment-instruction
(24) Update an existing rule
(25) Update an existing scenario
(26) Update an existing skill
(27) Update client information
(28) Update collaborator
(29) Update role
(30) Update the microapp - Update the microapps
(31) Update theme - Update theme
(32) Update user
(33) Updates a given field for an attack with a certain ID
(34) Updates and existing agent class to agent manifest mapping

configuration
(35) replaceGroups - Replaces user’s roles with the submitted ones
(36) sending a draft mail to a user
(37) update Category - Update Category
(38) updateCustomer
(39) updateProduct
(40) updates a track from the system - Updates a track from the

system

27

EuroPLoP’21, July 7–11, 2021, Graz, Austria

B.3 Appendable Collection (P2)

Table 19: Description and summary of the GET method in
GET/PUT/DEL (P2.v1)

(1) Find Tracks by ID- Returns a single Tracks
(2) Find ad by ID- Returns a single Ad
(3) Find ad_html_meta by ID- Returns a single AdHtmlMeta-
(4) Find client by ID- Returns a single client
(5) Find course by ID- Returns a single course
(6) Find item by ID- Returns a single Item
(7) Find order by ID- Returns a single order
(8) Find pet by ID- Returns a single pet
(9) Find product by ID- Search one product by id
(10) Find provider by ID- Returns a single provider
(11) Find user- Returns a user
(12) Finds News by Id- Returns a single news
(13) Get Address by ID
(14) Get Student By Name- Get Student Details by name
(15) Get Usage by id
(16) Get a Client Registration for a given Client ID
(17) Get a Distribution- Get a Distribution
(18) Get a client by way of Client ID
(19) Get a project by project_id
(20) Get a single message
(21) Get a specific city
(22) Get a user by ID
(23) Get a user- Return a json object of the user
(24) Get an Assessment object
(25) Get bucketlist with given ID for loggedIn User
(26) Get details of an Order
(27) Get infos about a specific exam- Returns the exam id
(28) Get match-
(29) Get one Product with specified ID
(30) Get provider by user code
(31) Get region by id
(32) Get scotch by id
(33) Get table
(34) Get team
(35) Get user by id- Get the user information by its id
(36) Get user by user id
(37) Get user by user name
(38) Gets Business Partner Object
(39) Gets an annotation Caller must have READ permission for the

associated annotation set
(40) Gets an annotation set Caller must have READ permission for

the associated dataset
(41) Gets the details for an order
(42) Look up a user by their user id
(43) Obter ummomento
(44) Retrieve the information associated with a signin record Re-

trieve the information associated with a signin record
(45) Return a Question by ID- Returns a single Question object
(46) Returns a nomination based on a single ID- Returns the nomi-

nation identified by ‘nominationId’
(47) returns a single entry

B.4 Collection (P3)

Table 20: Extracted descriptionof thePUTmethodof variant
DEL (P3.v7)

(1) Adds the secrets specified in the payload The payload must
be a JSON object where the keys are the secret names and
the values are the secret values If a secret already exists, it is
overwritten

(2) Edit a library
(3) Edit product This method allows you to edit existing product
(4) Modifica un usuario- Modifica un usuario por su identificador
(5) Overwrites the secrets for the specified system The payload

must be a JSON object where the keys are the secret names
and the values are the secret values

(6) Persist plugin metadata information
(7) Update a given beverage Requires ADMIN role- The beverage

must be already existentReturnvalue is theupdated and stored
data

(8) Update a snapshot schedule
(9) Update an existing role
(10) Update existing cloud backup schedule
(11) Update item in calories list for user
(12) Update user with give ID
(13) Updates an existing attribute- Updates an existing attribute
(14) Updates specified storage policy
(15) setProjectAgentPools
(16) update a tenant- Update a tenant

C API FRAGMENTS OVERVIEW
Togiveanoverviewof theAPIFragments,wemeasure their size, their
numberofoccurrences, and thenumberofunique label combinations
they have.

Figure 49 shows that the larger the fragment, the less likely it is
to reoccur multiple times. The largest fragments occur only once.
Our constraints in the search of API fragments that can be used as
pattern candidates is to both avoid unpopular fragments while also
ensuring to find ”interesting”, large-enough fragments.

While it is difficult to see in the chart, each dot represents not
only a fragment of the given size and occurrences, but since there
can be multiple fragments in the same coordinates we also color
each dot by the number of fragments found in that position. Most
of the fragments crowd into the origin area and have few repeated
occurrences. While the chart shows there is a lot of variability in the
structure of APIs, it also shows that – this is an extreme case – there
are four small fragments that reoccur more than 3000 times.

More in detail, we are interested to observe the actual labels on the
API fragment since they give an indication of the API semantics by
givingnames to its features. LabeledAPI fragments providepotential
known uses for the candidate patterns.

28

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

50 100 150 200 250 300 350 400 450 500 550
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

3,200

3,400

3,600

Fragment Size (Number of Nodes)

F
ra
gm

en
t
O
cc
u
rr
en
ce
s

500 1,000 1,500 2,000 2,500

Number of Fragments

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Figure 49: API Fragments Overview (Fragment Size vs. Occurrences)
29

EuroPLoP’21, July 7–11, 2021, Graz, Austria

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

3,200

3,400

3,600

Number of Unique Label Combinations

F
ra
gm

en
t
O
cc
u
rr
en
ce
s

Figure 50: This plot shows the relationship between howmany times API fragments occur and howmany unique label combi-
nations they have. Some fragments occur across thousands of APIs with thousands of unique label combinations. The vertical
distance of a dot representing a fragment from the Y=X line indicates howmany times the fragment reoccurs with exactly the
same label combination. Thismay be due to redundancy present in the API collection (someAPI descriptions have been cloned
or forked) or also because a fragment happens to be frequently used with the same labels.

30

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

20 40 60 80 100 120 140 160
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

Fragment Size (Number of Nodes)

N
u
m
b
er

of
U
n
iq
u
e
L
ab

el
C
om

b
in
at
io
n
s

100 200 300 400

Number of Fragments

Figure 51: This plot compares the size of the fragmentwith thenumber of unique label combinations it appearswith.Compared
to the raw number of occurrences, the Y-axis shrinks from 3600 down to 2400. The figure does not include fragments with a
single occurrence, thus the X-axis range is also reduced accordingly.

31

EuroPLoP’21, July 7–11, 2021, Graz, Austria

D LABELS USAGE
Thegoal thisAppendix is toprovideanadditional overviewabout the
labels usage through a set of guidance heat maps to help in plotting
the most used labels for each structural primitive.

We calculated the occurrences of each label in each structural
primitive. The labels are sorted first by their total number of occur-
rences, then alphabetically so that it is easy to find at the top of the
table which are the most used labels in each primitive. The most
used label for a specific variant is found by looking at the rowwhich
has the darkest color in the variant’s column.

To know in which variant a specific labels sequences is used the
most, it is enough to horizontally scan the row for the label looking
for the highest value, ignoring the last column in which the total
number of occurrences across all variants is reported. The heatmaps
only include the representative labels that we obtain using our labels
merging approach described in Section 3.1.2.

We merged labels sequences with common container labels such
as the ones in Figure 52. These labels are used in different variants of

Figure52:Label sequenceswithcontainer label "users" inCol-
lection primitive

theCollection(P3)primitiveandtheyshare thesamemeaning, thus
wedecidedmerging them in order to have concise guidance tables. In
our labelsprocessingapproach,we ignore thecaseof thecontainer re-
source label (e.g :dataPointer is equivalent todatapointer). We also

remove all the special characters and the spaces (e.g: dataPointers ,
data−pointers , data_pointer are considered equivalent). Moreover,
ignore the singularity and plurality of the labels (e.g:data_pointer is
equivalent to dataPointers). In the example of Figure 52 the label
users originally appears in different formats (e.g:user ,Users ,User),
our merging algorithms pick the most occurring form as a represen-
tative label of all the forms. The reason behind this clustering is to
give more insight about the labels usages and merge the ones that
represent similar concepts in order to avoid redundancy.

D.1 Enumerable Collection (P1)
In this primitive, the GET (P1.v1) is the one that appears with the
highest number of distinct labels. We notice that most of the labels
are only used by this variant, while other few ones are used also by
the other variants (occurs 202 times).

P
1
.v
1

P
1
.v
2

P
1
.v
3

P
1
.v
4

P
1
.s
1

P
1
.s
2

O
C
C

operations 51 0 0 0 5 0 56

users 29 1 4 11 1 1 47

resources 33 0 0 3 0 0 36

events 29 0 0 0 0 0 29

manifests 29 0 0 0 0 0 29

types 26 0 0 0 0 0 26

locations 24 1 0 0 0 0 25

instances 1 0 0 0 0 21 22

servers 3 0 0 0 17 0 20

clients 0 0 0 0 17 0 17

content 16 0 0 0 0 0 16

devices 8 0 0 8 0 0 16

organizations 16 0 0 0 0 0 16

services 16 0 0 0 0 0 16

views 16 0 0 0 0 0 16

vuln 16 0 0 0 0 0 16

shows 5 0 4 6 0 0 15

products 13 1 0 0 0 0 14

currencies 13 0 0 0 0 0 13

documents 13 0 0 0 0 0 13

files 7 0 0 6 0 0 13

jobs 2 10 0 0 0 1 13

artifacts 12 0 0 0 0 0 12

tasks 5 0 0 2 0 5 12

tags 8 0 3 0 0 0 11

images 9 1 0 0 0 1 11

keys 0 0 0 11 0 0 11

configs 2 8 0 0 0 0 10

descriptor 10 0 0 0 0 0 10

episodes 0 0 0 10 0 0 10

networks 3 0 0 6 0 1 10

people 4 0 0 6 0 0 10

versions 9 0 0 0 0 1 10

api-docs 9 0 0 0 0 0 9

email history 9 0 0 0 0 0 9

groups 9 0 0 0 0 0 9

items 9 0 0 0 0 0 9

metadata 8 0 0 0 0 1 9

policydefinitions 3 0 0 6 0 0 9

roles 9 0 0 0 0 0 9

accounts 6 0 0 2 0 0 8

applications 8 0 0 0 0 0 8

concepts 8 0 0 0 0 0 8

config schemas 8 0 0 0 0 0 8

Table 21: Enumerable Collection –Most occurring labels

32

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

D.2 Appendable Collection (P2)
user and order are themost used labels in this primitive.While most
of therestof the labelsappear less than10 times.GET/PUT/DEL(P2.v1)
and GET/DEL (P2.v2) are very recurrent variants (occurrences re-
spectively 194 and 145), however we notice that they are not used
with a high number of distinct labels such as GET (P2.v3), which is
the most occurring variant in this primitive.

P
2
.v
1

P
2
.v
2

P
2
.v
3

P
2
.s
2

P
2
.s
1

O
C
C

user 114 5 11 3 7 140

order 4 78 1 1 1 85

todo 1 12 1 0 0 14

messages 2 1 9 0 0 12

deployments 0 1 11 0 0 12

images 0 0 11 1 0 12

token 0 0 1 11 0 12

register 11 0 0 0 0 11

objectstores 0 0 0 0 8 8

account 1 0 6 0 0 7

comment 0 1 0 1 5 7

files 0 1 6 0 0 7

form fields 0 0 6 0 0 6

labels 0 0 1 5 0 6

wall comments 0 0 6 0 0 6

courses 1 4 0 0 0 5

disease 0 0 5 0 0 5

item 1 1 3 0 0 5

media 0 4 1 0 0 5

read 0 0 5 0 0 5

target 0 0 5 0 0 5

categorias 0 0 0 0 4 4

productos 0 0 0 0 4 4

post 0 0 2 1 1 4

products 2 0 2 0 0 4

traces 0 0 4 0 0 4

annotations 3 0 0 0 0 3

annotationsets 3 0 0 0 0 3

assets 0 0 0 3 0 3

cart 0 1 2 0 0 3

cluster 0 2 0 0 0 2

collections 0 0 3 0 0 3

datapointers 3 0 0 0 0 3

employee 0 1 1 0 1 3

entries 1 0 2 0 0 3

hub 0 2 0 1 0 3

individuals 3 0 0 0 0 3

jobs 0 0 1 2 0 3

policy keys 0 0 3 0 0 3

provider 2 0 0 0 1 3

student 1 1 1 0 0 3

subscriptions 1 0 0 2 0 3

task 1 0 1 0 1 3

update-requests 0 3 0 0 0 3

wallet 0 0 2 0 1 3

category 1 0 0 0 1 2

balance 0 0 2 0 0 2

batch 0 0 2 0 0 2

book 0 0 1 0 0 1

bookings 0 1 0 1 0 2

buy 0 0 2 0 0 2

campaigns 0 2 0 0 0 2

client 1 0 1 0 0 2

connections 0 0 2 0 0 2

distributions 2 0 0 0 0 2

documents 0 2 0 0 0 2

experiments 0 0 2 0 0 2

Table 22: Appendable Collection –Most occurring labels

D.3 Collection (P3)
In this primitive, there is a dominant label which is users . It oc-
curs 223 while the second most occurring labels, audit_trails and
chanдe_loдs are only used 61 time.

P
3
.v

1

P
3
.v

2

P
3
.v

3

P
3
.v

4

P
3
.v

5

P
3
.v

6

P
3
.v

7

P
3
.s
1

P
3
.s
2

O
C
C

users 4 108 10 11 31 19 7 3 30 223

audit trails 61 0 0 0 0 0 0 0 0 61

change logs 61 0 0 0 0 0 0 0 0 61

projects 0 24 3 1 1 8 7 8 2 54

tags 1 4 3 0 26 0 12 2 1 49

articles 0 31 1 0 2 2 0 0 0 36

comments 0 8 1 1 1 3 18 0 2 34

products 3 23 4 0 1 1 0 1 1 34

order 0 11 1 2 1 4 2 2 8 31

rules 0 4 1 0 8 8 1 0 8 30

events 1 16 1 0 0 1 1 0 6 26

roles 1 13 2 2 1 3 0 1 3 26

clusters 1 2 12 0 0 3 0 7 0 25

policies 0 24 1 0 0 0 0 0 0 25

client 0 16 1 2 1 1 1 0 1 23

group 0 9 0 1 0 1 0 0 10 21

messages 0 2 4 0 0 5 4 0 6 21

posts 0 12 1 1 0 3 0 0 2 19

subscriptions 0 9 1 0 0 8 0 0 1 19

accounts 0 6 1 2 1 0 2 0 6 18

compositetypes 18 0 0 0 0 0 0 0 0 18

images 1 1 0 0 0 14 0 0 2 18

pets 0 1 1 0 0 4 0 0 12 18

tasks 2 3 4 1 1 2 0 0 5 18

applications 2 6 0 0 0 2 0 7 0 17

credentials 0 0 0 0 1 0 16 0 0 17

members 0 5 0 0 0 4 6 0 1 16

contacts 0 14 0 0 0 0 0 0 1 15

item 1 9 2 1 1 1 0 0 0 15

volumes 0 0 0 0 8 7 0 0 0 15

example entities 3 11 0 0 0 0 0 0 0 14

services 1 10 0 0 0 2 1 0 0 14

types 8 1 1 0 1 1 0 1 1 14

authorizedcertificates 0 0 13 0 0 0 0 0 0 13

categories 1 8 1 0 0 2 0 1 0 13

domainmappings 0 0 13 0 0 0 0 0 0 13

ingressrules 0 0 13 0 0 0 0 0 0 13

invoices 2 9 0 0 0 1 0 0 1 13

sessions 0 0 4 0 0 7 0 0 2 13

bookings 0 3 1 0 2 0 6 0 0 12

books 0 9 1 0 0 2 0 0 0 12

configs 0 2 0 0 0 0 0 0 10 12

service-profiles 0 0 0 0 0 6 0 6 0 12

actions 0 8 3 0 0 0 0 0 0 11

apikeys 0 8 0 0 0 1 2 0 0 11

payments 1 5 3 0 0 0 0 0 2 11

tracks 0 8 0 0 1 0 1 0 1 11

cities 0 4 0 0 6 0 0 0 0 10

collaborators 0 0 0 0 0 10 0 0 0 10

networks 1 0 0 0 0 9 0 0 0 10

note 0 8 2 0 0 0 0 0 0 10

reward 0 0 0 0 0 0 0 0 10 10

rollouts 0 0 0 0 0 0 0 0 10 10

node 0 3 2 0 1 3 0 0 0 9

notifications 0 6 0 1 1 0 0 0 1 9

patient health metric 0 0 0 0 0 0 0 0 9 9

reward earning 0 0 0 0 0 0 0 0 9 9

reward earning fulfillment 0 0 0 0 0 0 0 0 9 9

reward program activation 0 0 0 0 0 0 0 0 9 9

runs 0 1 2 0 0 0 6 0 0 9

webresource 9 0 0 0 0 0 0 0 0 9

actionalias 0 8 0 0 0 0 0 0 0 8

addresses 0 5 0 1 1 1 0 0 0 8

authors 0 7 1 0 0 0 0 0 0 8

calendar event 0 0 8 0 0 0 0 0 0 8

clusterpairs 0 0 0 0 0 0 8 0 0 8

customers 0 5 0 0 1 0 0 0 2 8

device-profiles 0 0 0 0 0 4 0 4 0 8

environment 1 3 1 0 0 1 0 2 0 8

games 0 7 0 0 0 0 0 0 1 8

invitations 0 0 0 0 0 0 8 0 0 8

operations 0 0 0 4 0 0 1 0 3 8

profile 1 1 0 1 0 2 0 0 3 8

Table 23: Collection –Most occurring labels

33

EuroPLoP’21, July 7–11, 2021, Graz, Austria

D.4 Mutable Collection (P4)
This primitive is less frequently used. The intersection between the
labels usedwith the ”RemoveAll” variant and the two smells is rather
small, resulting in the two labels: secrets and tags.

P
4
.v
1

P
4
.s
1

P
4
.s
2

O
C
C

roles 0 8 14 22

users 0 3 16 19

collaborators 0 0 13 13

schedulepolicies 0 8 0 8

storagepolicies 0 8 0 8

events 4 0 3 7

schedules 0 7 0 7

secrets 4 2 0 6

certificates 4 0 0 4

ingresses 4 0 0 4

fxorders 0 0 3 3

info 0 3 0 3

payments 0 0 3 3

workspaces 3 0 0 3

post 0 0 2 2

skill 0 0 2 2

appbindings 2 0 0 2

catalog 0 0 2 2

configmaps 2 0 0 2

employees 0 0 2 2

groups 0 0 2 2

kubedboperators 2 0 0 2

lists 0 0 2 2

messages 1 0 1 2

product 0 1 1 2

tags 1 1 0 2

virtualmachineinstancemigrations 2 0 0 2

virtualmachineinstancepresets 2 0 0 2

virtualmachineinstancereplicasets 2 0 0 2

virtualmachineinstances 2 0 0 2

virtualmachines 2 0 0 2

campaignrecipient 0 0 1 1

campaignsettings 0 0 1 1

cursus 0 0 1 1

listcampaigndefaults 0 0 1 1

listcontact 0 0 1 1

member 0 0 1 1

template 0 0 1 1

topic 0 0 1 1

word 0 0 1 1

accounts 0 0 1 1

aerospikeclusters 1 0 0 1

aerospikenamespacebackups 1 0 0 1

aerospikenamespacerestores 1 0 0 1

agent-class-manifest-config 0 0 1 1

agentpools 0 1 0 1

albs 1 0 0 1

apps 0 0 1 1

attacks 0 0 1 1

attributes 0 1 0 1

auditregistrations 1 0 0 1

beverages 0 1 0 1

blogs 0 0 1 1

boards 1 0 0 1

books 0 0 1 1

branches 1 0 0 1

bundles 1 0 0 1

calories 0 1 0 1

categories 0 0 1 1

cdiconfigs 1 0 0 1

Table 24: Mutable Collection –Most occurring labels

REFERENCES
[1] [n.d.]. OpenAPIGenerator. https://github.com/OpenAPITools/openapi-generator.

https://github.com/OpenAPITools/openapi-generator
[2] [n.d.]. Swagger Codegen. https://swagger.io/tools/swagger-codegen/. https:

//swagger.io/tools/swagger-codegen/
[3] Subbu Allamaraju. 2010. RESTful Web Services Cookbook: Solutions for Improving

Scalability and Simplicity. " O’Reilly Media, Inc.".
[4] Önder Babur and Loek Cleophas. 2017. Using n-grams for the Automated Cluster-

ing of Structural Models. In International Conference on Current Trends in Theory
and Practice of Informatics. Springer, 510–524.

[5] Robert Daigneau. 2011. Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley Professional, New York,
NY, USA.

[6] Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-
Wesley, USA.

[7] Martin Fowler. 2010. Richardson Maturity Model: steps toward the glory of REST.
https://www.martinfowler.com/articles/richardsonMaturityModel.html

[8] Florian Haupt, Frank Leymann, and Karolina Vukojevic-Haupt. 2018. API Gover-
nance Support through the Structural Analysis of REST APIs. Comput. Sci. 33, 3–4
(Aug. 2018), 291–303.

[9] Gregor Hohpe and BobbyWoolf. 2003. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley.

[10] Stefan Kapferer and Olaf Zimmermann. 2020. Domain-Driven Service Design.
In Service-Oriented Computing, SchahramDustdar (Ed.). Springer International
Publishing, Cham, 189–208.

[11] István Koren and Ralf Klamma. 2018. The exploitation of openapi documentation
for the generation of web frontends. In Companion Proceedings of the The Web
Conference 2018. 781–787.

[12] M. Maleshkova, C. Pedrinaci, and J. Domingue. 2010. InvestigatingWeb APIs on
theWorld WideWeb. In 2010 Eighth IEEE European Conference on Web Services.
107–114. https://doi.org/10.1109/ECOWS.2010.9

[13] Francis Palma, Johann Dubois, Naouel Moha, and Yann-Gaël Guéhéneuc. 2014.
Detection of REST Patterns and Antipatterns: A Heuristics-Based Approach. In
Proc. of ICSOC. Springer, 230–244.

[14] Sanjay Patni. 2017. Pro RESTful APIs. Springer.
[15] Cesare Pautasso, Ana Ivanchikj, and Silvia Schreier. 2016. A Pattern Language for

RESTful Conversations. In Proceedings of the 21st European Conference on Pattern
Languages of Programs (EuroPLoP). Irsee, Germany.

[16] Fabio Petrillo, PhilippeMerle, Naouel Moha, and Yann-Gaël Guéhéneuc. 2016. Are
REST APIs for Cloud ComputingWell-Designed? An Exploratory Study. In Proc.
ICSOC. Springer, 157–170.

[17] Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs.
O’Reilly.

[18] Leonard Richardson and Sam Ruby. 2007. RESTful Web Services. O’Reilly.
[19] Carlos Rodríguez,Marcos Baez, FlorianDaniel, Fabio Casati, JuanCarlos Trabucco,

Luigi Canali, and Gianraffaele Percannella. 2016. REST APIs: A Large-Scale Anal-
ysis of Compliance with Principles and Best Practices. In Proc. ICWE. Springer,
Lugano, Switzerland, 21–39.

[20] Spacy. [n.d.]. Models Documentation. https://spacy.io/models/en
[21] Phil Sturgeon. 2016. Build APIs you won’t hate. LeanPub. https://leanpub.com/

build-apis-you-wont-hate
[22] The Open API Initiative. [n.d.]. OAI. https://openapis.org. https://openapis.org/
[23] Markus Voelter, Michael Kircher, and Uwe Zdun. 2004. Remoting Patterns - Foun-

dations of Enterprise, Internet, and Realtime Distributed Object Middleware. J. Wiley
& Sons, Hoboken, NJ, USA.

[24] JimWebber, Savas Parastatidis, and Ian Robinson. 2010. REST in Practice: Hyper-
media and Systems Architecture (1st ed.). O’Reilly Media, Inc.

[25] Uwe Zdun and Paris Avgeriou. 2008. A catalog of architectural primitives for
modeling architectural patterns. Information and Software Technology 50, 9 (2008),
1003–1034. https://doi.org/10.1016/j.infsof.2007.09.003

[26] Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker.
2020. Interface Responsibility Patterns: Processing Resources and Operation Re-
sponsibilities. In Proc. of the European Conference on Pattern Languages of Programs
(Online) (EuroPLoP ’20).

[27] Olaf Zimmermann, Daniel Pautasso, Cesare Lübke, UweZdun, , andMirko Stocker.
2019. Data-Oriented Interface Responsibility Patterns: Types of Information
Holder Resources. In Proc. of the European Conference on Pattern Languages of
Programs (Online) (EuroPLoP ’19).

[28] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun.
2020. Introduction to Microservice API Patterns (MAP). In Joint Post-proceedings
of the First and Second International Conference on Microservices (Microservices
2017/2019) (OpenAccess Series in Informatics (OASIcs), Vol. 78), Luís Cruz-Filipe,
Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher,
and Sabine Sachweh (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 4:1–4:17. https://doi.org/10.4230/OASIcs.Microservices.2017-
2019.4

34

https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator
https://swagger.io/tools/swagger-codegen/
https://swagger.io/tools/swagger-codegen/
https://swagger.io/tools/swagger-codegen/
https://www.martinfowler.com/articles/richardsonMaturityModel.html
https://doi.org/10.1109/ECOWS.2010.9
https://spacy.io/models/en
https://leanpub.com/build-apis-you-wont-hate
https://leanpub.com/build-apis-you-wont-hate
https://openapis.org/
https://doi.org/10.1016/j.infsof.2007.09.003
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4

FromOpenAPI Fragments to
API Pattern Primitives and Design Smells EuroPLoP’21, July 7–11, 2021, Graz, Austria

[29] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun.
2021. Microservice API Patterns. https://microservice-api-patterns.org/.

[30] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. 2017. Interface
Representation Patterns: Crafting and ConsumingMessage-Based Remote APIs.

In Proc. of the 22nd European Conference on Pattern Languages of Programs (Irsee,
Germany) (EuroPLoP ’17). ACM, Article 27, 36 pages. https://doi.org/10.1145/
3147704.3147734

35

https://microservice-api-patterns.org/
https://doi.org/10.1145/3147704.3147734
https://doi.org/10.1145/3147704.3147734

	Abstract
	1 Introduction
	2 Fragmenting APIs
	2.1 API Collection Overview
	2.2 Domain Concepts
	2.3 Representing the API Structure as a Tree
	2.4 API Fragments

	3 Fragments Clustering
	3.1 API Fragments Clustering and Selection
	3.2 Labels Similarity Results

	4 Structural API Primitives
	4.1 Enumerable Collection (P1)
	4.2 Appendable Collection (P2)
	4.3 Collection (P3)
	4.4 Mutable Collection (P4)

	5 From Primitives to Larger Structures and API Responsibility Patterns
	5.1 Composing Primitives
	5.2 Relation to Architectural Patterns and Interface Description Languages (IDLs)

	6 Related Work
	6.1 Model Clustering
	6.2 Structural Analysis of Web APIs

	7 Threats to Validity
	8 Conclusion
	Acknowledgments
	A API Tree Visualizations
	A.1 TvMaze user API
	A.2 Columba API
	A.3 AnyPay API
	A.4 API for the COVID-19 Tracking QR Code Signin Server
	A.5 Passman API
	A.6 ID Vault API
	A.7 Invotra API

	B Extracted Descriptions of HTTP Methods
	B.1 Enumerable Collection
	B.2 Mutable Collection (P4)
	B.3 Appendable Collection (P2)
	B.4 Collection (P3)

	C API Fragments Overview
	D Labels Usage
	D.1 Enumerable Collection (P1)
	D.2 Appendable Collection (P2)
	D.3 Collection (P3)
	D.4 Mutable Collection (P4)

	References

