
How Composable is the Web?
An Empirical Study on OpenAPI Data model

Compatibility

1st Souhaila Serbout
Software Institute (USI)

Lugano, Switzerland

souhaila.serbout@usi.ch

2nd Cesare Pautasso
Software Institute (USI)

Lugano, Switzerland

c.pautasso@ieee.org

3rd Uwe Zdun
University of Vienna

Faculty of Computer Science, Austria

uwe.zdun@univie.ac.at

Abstract—Composing Web APIs is a widely adopted practice
by developers to speed up the development process of complex
Web applications, mashups, and data processing pipelines. How-
ever, since most publicly available APIs are built independently of
each other, developers often need to invest their efforts in solving
incompatibility issues by writing ad-hoc glue code, adapters and
message translation mappings. How likely are Web APIs to be
directly composable?

The paper presents an empirical study to determine the
potential composability of a large collection of 20,587 public
Web APIs by verifying their schemas’ compatibility. We define
three levels of data model elements compatibility – considering
matches between property names and/or data types – which can
be determined statically based on API descriptions conforming to
the OpenAPI specification. The study research questions address:
to which extent are Web APIs compatible; the average number of
compatible endpoints within each API; the likelihood of finding
two APIs with at least one pair of compatible endpoints.

To perform the analysis we developed a compatibility checker
tool which can statically determine API schema compatibility
on the three levels and find matching pairs of API responses
which can be directly forwarded as requests to the same or
other APIs. We run the tool on a dataset of 751,390 request
and response message schemas extracted from publicly available
OpenAPI descriptions.

The results indicate a relatively high number of compatible
APIs when matching their data models only on the level of
their elements’ data type. However, this number gets lower
narrowing the scope to only the ones handling data objects having
identical properties name. The average likelihood of finding two
compatible APIs with both matching property names and data
types reaches 21%. Also, the number of compatible endpoints
within the same API is very low.

Index Terms—Web APIs, OpenAPI Specification, API Com-
posabilty, Endpoints Composability, Empirical Study.

I. INTRODUCTION

Service providers rely on mechanisms such as HTTP APIs

to expose their services to multiple clients through public end-

points of different structures [18] on the Web [3]. Very often,

they choose JSON as the main data interchange format [17]. To

speed up the implementation of client applications, developers

rely on Mashup integration and discovery tools and follow

specific approaches [13], [14], [24] to minimise their efforts of

The work is funded by the SNF, with the API-ACE project nr. 184692.

finding API candidates that can be chained or aggregated [7],

[16].

APIs operations and their data models can be described

using Interface Description Languages. The currently most

widespread one among developers is the OpenAPI Specifica-

tion [20] (which we call henceforth for brevity: OAS). It is an

internal Domain Specific Language (DSL) of the JSON data

serialization format. The language uses an adapted version of

JSON Schema [2] to describe the data model of Web APIs.

Nowadays, there are many tools built around OAS, facilitating

APIs descriptions parsing, validation, documentation, and code

generation. However, there exists none for systematically com-

paring and statically checking the compatibility of schemas

describing the data communicated by different API endpoints.

In this work, we developed a static matcher of source APIs

responses schemas and sink APIs request schemas, in order

to discover the ones with compatible endpoints. The tool can

be used interactively by Mashup developers: given a response

obtained from an API, it can provide recommendations about

compatible API requests.

To compare the schemas, we define different types of

matching strategies and we apply them to determine schemas

compatibility on three levels (property names and/or data

types) and measure their impact on whether messages pro-

duced by a given source API can be directly consumed

by another sink API. While these detected matches can be

provided to Mashup developers as part of auto-completion and

API recommendation tools [8], in this paper, we take a broader

view and empirically analyze the overall compatibility of a

large collection of real-world Web APIs.

Within this context, we attempt to answer the following

research questions:

Q1: How compatible are Web APIs?
Our goal is to evaluate the level of compatibility of Web

APIs’ data models described using OAS, starting from a

large representative sample. APIs with compatible schemas

are potentially directly composable, i.e., they can be used to

build a Mashup without the need to introduce any complex

adaptation. We consider directly composable also APIs that

415

2022 IEEE International Conference on Web Services (ICWS)

978-1-6654-8143-4/22/$31.00 ©2022 IEEE
DOI 10.1109/ICWS55610.2022.00068

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 W

eb
 S

er
vi

ce
s (

IC
W

S)
 |

97
8-

1-
66

54
-8

14
3-

4/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

W
S5

56
10

.2
02

2.
00

06
8

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 13,2023 at 17:14:07 UTC from IEEE Xplore. Restrictions apply.

require simple adaptations, such as obvious data types conver-

sion (e.g: number to string).

We do not assume that any pair of APIs with compatible data

model elements should be used in a purposeful Mashup, as

the underlying semantic meaning of schemas having the same

types and property names can be vastly different. Before de-

ciding to compose APIs with compatible data model elements,

Mashup developers usually take into account additional knowl-

edge available in higher-level semantics information present

in natural language descriptions that are not considered in

this study. However, when APIs provide or consume schemas

that are compatible, this ensures that no data representation

mismatches will occur when attempting to compose them.

Q2: On which level are most API compatible? Strict

schemas compatibility requires both schema elements data

types and objects’ properties names to match. This ensures

that JSON payloads transferred from one API to the next

will not break the corresponding schema compliance checking

usually found at the API boundary. In this study, we relax this

requirement and analyze both object property name and data

type matches independently so that we can quantify the impact

of each dimension on the compatibility of each pair of API

endpoints. Property name matches indicate potential semantic

matches that would require some data type conversion when

composing the corresponding endpoints. Looking for compat-

ible data types focuses on syntactic matches, which could lead

to composable endpoints by finding a suitable parameter name

mapping.

Q3: What is the likelihood that a random pair of APIs has
at least one compatible endpoint? A compatible pair of end-

points is composed of a sink and a source endpoints handling

data resource of compatible schemas. Answering this question

for different segments of our sample of Web APIs could help

to generalize the results to other Web APIs collections. We

study whether and how such probability depends on the API

size, defined as the number of endpoints.

Q4: To what extent are the APIs endpoints compatible?
While we consider “compatible” a pair of APIs having at

least one compatible pair of endpoints, we are interested to

determine to which extent all of the endpoints of an API can

be compatible with some or all the endpoints of other APIs.

The results show that the number of compatible APIs in the

analyzed collection varies depending on the chosen matching

level (between 15 million pairs of APIs with compatible

data model elements on the Data-Type Level and approx. 0.5

million pairs of APIs when considering both Data-Type and

Property-Name). Most compatible pairs of endpoints are found

across different APIs. There is a larger proportion of compat-

ible APIs which can act as a source as opposed to a sink,

although the majority can play both roles. Within each API

that is compatible with another one from the studied collection,

there is a median of 3-5 compatible endpoints, leading to

an average rates of 18% endpoints potentially composable as

sinks and 28% as sources when using the strictest matching

level that considers both data types an property names. Overall,

the probability of random pairs of APIs being compatible tends

to grow with the size of the API and on average is 21%.

The rest of this paper is structured as follows. We present

the dataset and give some background on OAS data models

in Section II. We present the schema compatibility analysis

method in Section III and illustrate and discuss the results

in Sections IV and V. We summarize the related work in

Section VII and draw some conclusions in Section VIII.

II. BACKGROUND: DATASET AND OAS SCHEMAS

A. APIs Dataset Overview

1) Dataset Collection: The dataset used in this study is

composed of de-duplicated OAS descriptions of 106,873 APIs:

56,536 was collected directly from public software repositories

in Github, using the Github API, and the rest was obtained

from a dataset shared by Assetnote in the context of BSides

Canberra 2021 conference1.

Our Github search query targeted YAML/JSON files that

contain some OAS required properties. Any valid OAS de-

scription is required to contain a field OAS or swagger
which specifies the version of the language used in the

current specification. It is also required to have an info
section, which should be mandatory to have a title. These

specification details are the main heuristics based on which

our Github search query was built.

An API description can be written all in one file, as

it can be split over several files linked through references

using the $ref JSON schema construct. For that reason,

while downloading the found potential OAS descriptions, we

extracted all the external references that are pointing to other

files, followed them, and downloaded them. However, we

could not download the referenced files in the case of the

descriptions we collected from the dataset shared by Assetnote,

as they did not share the sources where each file comes from.

2) Dataset Preparation: We extracted from that collected

dataset the most realistic API descriptions: First, we filtered

valid descriptions, then we selected the ones that have at least

one realistic server (OAS v3) and base path (Swagger) URL.

This ensures the dataset includes only specifications describing

APIs of services with valid endpoints. We also selected APIs

that have at least one endpoint with a description of schema

of consumed or produced data, and have at least three paths in

order not to bias the average composability rate. The resulting

collection we analyze in this study is composed of 20,587

distinct and valid API descriptions, with 583,207 response

schemas and 168,183 request schemas, leading to potentially

98,085,502,881 schemas matches (Table I).

B. Comparable Schema Objects in OpenAPI Specification

In OAS, responses and requests data are described through

defining Schema Objects which uses 16 properties that are

directly taken from the JSON Schema specification, which

include: title, enum, required, minimum, maximum,

multipleOf, minItems, maxItems. We denote these

properties set PJ . Other 11 keys are also taken from the JSON

1https://blog.assetnote.io/2021/04/05/contextual-content-discovery/

416

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 13,2023 at 17:14:07 UTC from IEEE Xplore. Restrictions apply.

Schema specification, but they are adapted to the Web APIs

data models’ context, including: type, format, oneOf,

anyOf, allOf, etc. We denote this set of keys PA.

As for JSON Schema, OAS supports describing data of

primitive data types: integer, string, number, boolean, and

data of complex nested structures which are the arrays and

the objects. An array is a sequence of items that can be of

primitive or complex data types. And an object is a map of

key-values, where the values can be of primitive or complex

data types. These data types define the structure of the JSON

object that is communicated as part of the HTTP response or

request body exchanged with a specific API endpoint.

Note that in OAS a valid specification cannot contain invalid

JSON schemas.

Given the wide variety of schema descriptions found in

the collection, we formalize a valid and statically comparable

Schema Object in OAS as a JSON object that conforms to the

following rules:

Let S be a valid schema, S =
⋃

i∈I(ki, value(ki)), I =
{i ∈ N, i ≤ n}, where n is the total number of top-level keys

of S .

The possible values type of each key k ∈ PJ ∪ PA are:

type(value(k)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

number for k ∈ PJ \ {title, pattern,
required, enum}

string for k ∈ {title, pattern, type,
format, description}

simple array for k ∈ {required, enum}
complex array for k ∈ PA \ {type, format,

description}
object for k ∈ {properties, items}

A simple array is an array of strings or numbers, while

complex array is a complex array of JSON objects or arrays.

In the case of the pattern property, the value should be a valid

regular expression.

APIs with schemas that do not conform with this validity

rule do not make it possible to statically determine whether

they are compatible or not. Therefore 59, 593 schemas have

been excluded from the comparison.

C. Extracted Schemas Overview

To extract the data schemas descriptions, we parsed all the

API endpoints responses and request bodies. Our schemas

compatibility checker supports both Swagger 2.0 and OAS

3.0 schemas. In an API description written in OAS, the data

schemas can be found in the section definitions in the

case of the Swagger 2.0 or in the section components in

the case of OAS 3.0 and 3.1, then referenced using the $ref
JSON construct (e.g: {"$ref":’/path-to-schema’})

in the endpoint where it is used. In this case, according to

OAS terminology, the schema is used as a Reference Object,

that can be internal or external. A data schema can also be

defined in its usage place. To simplify the APIs description

and reduce schemas extraction task complexity, we first bundle

the description split over several files into one and resolve

all the internal references. The resulting description file does

not contain any $ref key. Then we proceed in extracting

0 100 200 300 400 500

100

101

102

103

#Endpoints

#
A

P
Is

Figure 1. API Size Distribution

0 200 400 600 800 1,000

0

200

400

#Schemas

#
P

at
h
s

0 2 4 6 8 10 12 14

Figure 2. #Paths vs #Schemas

the schemas of each endpoint. Note that schemas with cyclic

references are not extracted.

From 20,587 APIs we extracted a total of 751,390 valid

Data Schemas, where 77.6% are request schemas (we note

this set of schemas SREQ) and 22.4% are associated with

responses (SRES). Table I shows that there are at least three

times more responses than requests. This is due to presence of

many GET operations, which only provide a response schema

(Table II).

In Fig. 1 we show how many APIs have the same number of

endpoints. In Fig. 2 we show the correlation between API Size

(the #Paths) and the total number of extracted data schemas

for each API. The density scatter plots use color to indicate

how many APIs share the same metric values.

The #Paths indicates the size of the API structure [17], while

the #Endpoints measures how many paths refer to at least one

schema which can be statically compared.

D. Complex Operators Usage

The OAS language inherits from JSON Schema the pos-

sibility of defining constraints over sub-schema combinations

using the allOf, oneOf and anyOf. Schemas become more

complex to statically analyse when they contain nested data

structures or use composition.The allOf construct is used to

define a data structure that is the union of the data structures

defined by the sub-schemas. The oneOf construct picks one

of the sub-schemas. The anyOf construct defines the union

of some sub-schema combination. In Table III we show how

often these constructs are used in our dataset. Because of its

417

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 13,2023 at 17:14:07 UTC from IEEE Xplore. Restrictions apply.

Table I
EXTRACTED VALID SCHEMAS OVERVIEW

Number of Schema Types Number of Schema Types per API
Total Primitive Complex Min Avg Max StdDev Median Q1 Q3

SRES 583,207 66,765 516,442 0 30.22 2,513 75.97 12 6 28
SREQ 168,183 5,369 162,814 0 8.19 928 17.36 3 1 8

SRES ∪ SREQ 751,390 72,134 679,256 1 19.20 2,513 53.33 8 5 18

Table II
HTTP METHODS USAGE IN THE STUDIED APIS

Method Min Avg Max Median Q1 Q3

GET 0 10.60 1560 5 3 11
POST 0 8.40 564 4 1 8

PUT 0 2.04 344 1 0 2
DELETE 0 1.82 344 1 0 2

PATCH 0 0.92 344 0 0 0

Table III
USAGE OF THE ALLOF , ONEOF , ANYONE AND NOT OPERATORS IN THE

API SCHEMAS

#Constructs #Schemas

Operator SRES SREQ SRES SREQ SRES ∪ SREQ
allOf 181,714 110,494 140,438 47,143 187,581

oneOf 33,975 11,925 28,442 11,691 40,133
anyOf 5,991 3,444 5,950 3,438 9,388

not 153 81 29 28 57

low usage (Tab. III) and complex semantics [4], in this study

we excluded schemas using a not operator (already filtered

in Table I).

III. API SCHEMA COMPATIBILITY ANALYSIS

Our compatibility analysis is based on searching for match-

ing APIs’ data models elements, to statically determine

whether data retrieved from an API endpoint can be directly

sent to another one. The result is a classification of the APIs

and their endpoints as follows:

Definition 3.1 (Endpoint Match): A pair of endpoints be-

longing to the same or different APIs where the source

endpoint has at least one response schema that is compatible

(on a certain level) with a request schema of a sink endpoint.

Definition 3.2 (API Match): A pair of APIs with at least

one endpoint match.

Definition 3.3 (Compatible API): An API with at least one

endpoint involved in an endpoint match.

For example, for each API response obtained from a GET

(or any other HTTP method) request we search for a matching

JSON structure described in the schema of the request body

of another endpoint (with a POST, PUT, PATCH method) in

the same or other APIs in the collection. To do so, we detect

matches based on three compatibility relationships (matching
levels) between the pair of distinct endpoints.

Definition 3.4 (Data-Type Match): A pair of schemas with

identical element data types.

The first matching strategy is applicable to schemas with

both complex and primitive types. It focuses on ensuring

that the request message content can be built from the data

structures found in the responses, but – in case of complex

data types – it may require a mapping between data elements

of compatible primitive types since it ignores their names.

Definition 3.5 (Property-Name Match): A pair of schemas

with identical element names.

The goal of the second level is to compare two schemas

taking only into account the semantic knowledge they con-

tain. Responses which semantically match requests can be

forwarded between APIs, assuming that suitable data type con-

version can be introduced. This level concerns only complex

datatypes: objects and arrays of objects, as they

are the ones that hold in the names of their properties concise

semantic knowledge about the described data.

Definition 3.6 (Property-Name and Data-Type Level Match):
A pair of schemas with identical element names and types.

This is the most strict schema compatibility level, which

detects responses which can be directly be forwarded as

requests without any fields renaming or data type conversion.

While doing so will not break the schema conformance

checking usually found on the sink API side, it may not always

be meaningful to compose such APIs in a useful Mashup

application.

A. Impact on Composability

The implication between compatible schemas and compos-

able endpoints does not always hold. As shown in Figure 3,

it may be possible to compose incompatible schemas by

introducing suitable adapters. Likewise, it may be impossible

to compose compatible endpoints due to higher-level semantic

mismatches.

We distinguish:

Definition 3.7 (Directly Composable Match): A pair of

schemas with identical element names that are also syntac-

tically compatible with identical data types or where all sink

types are strings.

These matches can be potentially lead to directly compos-

able endpoints, whose responses that can be forwarded without

any translation to the next API.

Definition 3.8 (Indirectly Composable Match): We distin-

guish two situations:

S1: A pair of schemas with identical data types, for

which a mapping between mismatching property names can be

provided to translate the responses into compatible requests.

The identical data types make it possible to attempt to re-

name the corresponding property names to perform a simple

message translation.

S2: A pair of schemas with identical schemas elements
name makes it also possible to attempt data types adaptation,

in case of data types mismatch. However, in some cases the

data types conversion can be impossible.

Definition 3.9 (Not Composable Match): A pair of schemas

with identical element names, where all source and sink types

are different and no data type conversion is possible.

418

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 13,2023 at 17:14:07 UTC from IEEE Xplore. Restrictions apply.

NoC
om

po
sa

bl
e A

PI

With property name
adaptation and/or

data type conversion

Yes

Compatible Schema

Not Composable

Directly
Composable

No adaptation required

Despite being compatible

Indirectly
Composable

Partial Strict

Figure 3. Relationship between API Compatibility and Composability

In general, Property-Name Level matches can be compos-

able if it is possible to resolve the Data-Type Level mis-

matches. For example, it is possible to convert any primitive

type into a string. While the previous definitions can be

generalized to pairs of schemas where trivial conversions are

possible between all, some or no pair of types, in this paper

we further classified Property-Name Level matches according

to the previous string-based definitions.

We also do not consider cases in which from a large

response a subset of the data can be extracted and forwarded

as a smaller request to another API.

B. Schema Matching Algorithm

In this section we explain the approach followed to detect

compatibility between data schemas of two endpoints on

three different levels: Data-Type, Property-Name, Data-Type

& Property-Name Level.

Given the different representations of equivalent schemas

(an example is shown in Fig. 4), we perform different schema

pre-processing steps. These steps depend on the type of

relationship we want to detect, and they aim at bringing all

the different schemas descriptions into a canonical form, which

makes the compatibility check more efficient.

Property-Name Level This comparison aims at matching

the semantic data models of response payloads and requests

data structures of two different endpoints.

For instance, the Schemas 1 , 2 and 3 are both describing

objects with properties of the same name, however the ob-

jects representations are described differently. An instance of

Schemas 1 and 2 are also valid against 4 . However, objects

that have in addition the email property are also valid against
4 , making the matches between 4 and each of the 1 and 2

only a possible one.

If two schemas describe objects or arrays of objects having

the same properties names this implies also their structural

similarity, however, they are not necessarily syntactically com-

patible due to mismatches of the primitive types of the object

or array properties with matching names. We further study one

case in which the sink schema uses string types, which can

receive data from any other primitive type with straightforward

data conversion. Other simple data type conversions may be

possible to ensure the composability of endpoints that match

on a Property-Name Level only.

Data-Type In this matching level, we are interested in

only comparing the schemas’ data types. While the schemas

of primitive data types are easy to compare, the complex

ones require schemas simplifications and abstraction to be

able to compare them. First, the compared schema definitions

should be structurally identical, then the data types of all

their properties should be also identical to be considered

“compatible”. The Schemas 1 , 2 and 3 are compatible also

in this matching level.

C. Canonical Form Transformation

The richness of the JSON format makes it not trivial to

identify the relationship between two JSON Schemas. Equiv-

alent schemas can be described in very different ways (Fig. 4).

The goal of the canonical transformation is to obtain a unified

schema representation that can be efficiently compared for

each matching level. We show an example in Fig. 5. The

canonical form used to compare the schemas depends on the

matching level and on whether the schema is of a complex

or a primitive data type (Fig. 6). The transformation uses the

following steps:

1) Irrelevant properties removal. In the OAS standard

the following schema properties (description, title,

default, example, readOnly, writeOnly, example,

as well as the PJ properties listed in Section II-B). These

properties are not relevant for the matching process so they

are removed from the schemas. This step is also important to

reduce the schemas comparison cost.

2) Complex operators simplification. The complex oper-

ators allOf, anyOf and oneOf are simplified in order to

be able to compare the data schemas on each matching level.

allOf. If a schema S =
⋃

i∈I(ki, value(ki)) is using an

allOf operator, this mean that there exist a key ki for

which value(ki) is an array of sub-schemas s1, s2, .., sm. The

simplified schema S is a schema that merges all the properties

of the sub-schemas s1, s2, .., sm without the allOf operator.

oneOf. The schema is simplified by creating a new schema for

every sub-schema found within the oneOf entries.

anyOf. The schema is simplified to an array of all the possible

schemas combinations obtained by recombining all schemas

from the array under the anyOf element.

3) Schemas properties sorting. The goal of this step is

to unify the structures of the data schemas that should be

compared on a syntactic level only. First we sort each nested

Schemas Object by the number of nested Schemas Objects

it contains, then by Number of nodes and finally by their

depths. And finally, we sort all the nested Schema Objects

alphabetically based their types.

4) Schemas properties labels abstraction. After unifying

the schema’s structure, we replace the labels by abstract ones

so that two schemas having the same set of types have an

identical description.

419

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 13,2023 at 17:14:07 UTC from IEEE Xplore. Restrictions apply.

1

2

{
"type": "object",
"description": "A user schema",
"properties": {
"id": {
"type": "string"

},
"name": {
"type": "string"

}
}

}

{
"type": "object",
"allOf": [

{
"type": "object",
"properties": {
"id": {
"type": "string" }}},

{
"type": "object",
"properties": {
"name": {
"type": "string" }}}

],
"required": [
"name"

]
}

3

4

{
"type": "object",
"oneOf": [

{
"type": "object",
"properties": {
"id": {
"type": "string" },

"name": {
"type": "string" }}}

]
}

{
"type": "object",
"anyOf": [

{
"type": "object",
"properties": {
"id": {
"type": "string" }}},

{
"type": "object",
"properties": {
"name": {
"type": "string" }}},

{
"type": "object",
"properties": {
"email": {
"type": "string" }}}

],
"required": ["id"]

}
Figure 4. Examples of Equivalent Schemas Objects

D. Comparison Outcomes: Possible Compatibility

Once the Canonical Forms of the source and destination

schemas are obtained, the schemas are then compared to detect

a “compatibility” or a “possible compatibility” (Table VI).

This outcome depends on the usage of composition operators.

If a response schema Sres uses the operators: oneOf or

anyOf or both at the same time, this means that the target

schema should be compared to a set of possible response

schemas. If a compatibility is detected, it is considered a

“possible compatibility” because the match is not guaranteed.

Instead, if the request schema uses the oneOf or anyOf op-

erators, this means that the sink API accepts data conforming

to different schemas. In this case, if at least one of the request

schemas matches (one of) the response schema we classify it

as “compatibility” following Postel’s law. This also holds if

both request and response schemas include exactly the same

set of schemas inside the oneOf or anyOf operator.

In all the other cases, if the canonical forms are identical,

then the schemas are considered “compatible”.

IV. RESULTS

Q1: How compatible are Web APIs?
Overall, we found 358,136,317 pairs of endpoints belonging to

25,461,429 pairs of source and sink APIs that can potentially

be directly composed. Table IV shows how the number of

matches depends on the considered matching level. As ex-

pected, less matches are found when considering both data

types and property names.

In the case of Property-Name Level matches the compos-

ability depends on the sink schema data types. Among the

4,488,045 detected Property-Name Level API matches we

found 3,012,623 cases where the endpoints are Directly Com-

posable: 511,563 because they also match also on a Data-Type

Level, while for 2,501,060 it is possible to perform automatic

data conversion of all properties. In 683,929 matches we

found schemas with identical properties name, but different

data types. However, in these cases the properties of the

sink schemas are all of string type, also making the data

adaptation trivial, thus we still consider the endpoints to be

potentially directly composable. While, in the case of 791,493

matches, the data types conversion of all the properties is not

evident, making those more challenging to indirectly compose.

Q2: On which level are most API compatible? The results

shown in Table V indicate that there are less APIs (54.6%

of sources and 31.9% of sinks) which use the same property

names than the ones (92.6% sources, 43.6% sinks) which share

the same property types. When considering both criteria, the

number of compatible APIs drops to 19.4% (sources) and

18.5% (sinks).

Q3: What is the likelihood that a random pair of APIs has
at least one compatible endpoint? Based on the endpoints

compatibility results (Table VI), we compute the likelihood

that an APIs with a specific number of endpoints n has at

least one endpoint compatible with any other endpoint of APIs

present in the collection. We define this probability as:

pL(n) =
|AcompL

n |
|An| (1)

where AcompL
n is the set of APIs with n endpoints and with at

least one compatible endpoint according to a specific matching

level L. An is the full set of APIs having exactly n endpoints.

In Fig. 7 we plot the probabilities pS&S(n) of matches

occurring on the Data-Type and Property-Name Level for APIs

with endpoints n ≤ 500.

We can see that the more endpoints an API has, the more likely

it is to have at least one compatible endpoint. The probability

drops significantly for the APIs with n ≤ 100. Only for 130

420

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 13,2023 at 17:14:07 UTC from IEEE Xplore. Restrictions apply.

Original schema

{
"type": "object",
"oneOf": [

{
"properties": {
"id": { "type": "string" },
"name": {
"type": "object",
"properties": {
"first_name": { "type": "string" },
"last_name": { "type": "string" },
"age": {
"type": "integer",
"minimum": 0,
"maximum": 150

},
"pets": {
"type": "array",
"items": { "type": "string" }

}}}}}
]

}

After Steps 1 and 2

{
"type": "object",
"properties": {
"id": { "type": "string" },
"name": {
"type": "object",
"properties": {
"first_name": { "type": "string" },
"last_name": { "type": "string" }

}},
"age": { "type": "integer" },
"pets": {
"type": "array",
"items": { "type": "string" }

}
}

}

After Step 3 (Sort Properties by Type)

{
"type": "object",
"properties": {
"pets": {
"type": "array",
"items": { "type": "string" }

},
"age": { "type": "integer" },
"name": {
"type": "object",
"properties": {
"first_name": { "type": "string" },
"last_name": { "type": "string" }

}},
"id": { "type": "string" },

}
}

After Step 4 (Label Abstraction)

{
"type": "object",
"properties": {
"p_1": {
"type": "array",
"items": { "type": "string" }

},
"p_2": { "type": "integer" },
"p_3": {
"type": "object",
"properties": {
"p_3_1": { "type": "string" },
"p_3_2": { "type": "string" }

}},
"p_4": { "type": "string" },

}
}

Figure 5. Canonical Form Transformation Example

Table IV
NUMBER OF API AND ENDPOINT MATCHES WHERE A PAIR OF COMPATIBLE REQUEST AND RESPONSE SCHEMAS HAS BEEN FOUND ACCORDING TO EACH

LEVEL OF COMPATIBILITY.

#API Matches #Endpoint
Matching Level Type (Possible) Matches

Property-Name Complex 4,488,045 162,001 21,542,616

Data-Type
Complex 15,457,565 304,372 79,412,732
Primitive 9,490,301 59,844 277,248,326

Data-Type & Property-Name Complex 511,563 40,925 1,475,259

APIs with n > 100 it is not possible to compose them with any

other API of the collection, while 15,516 APIs with n ≤ 100
do not have endpoints that can be directly composed without

adaptation.

The weighted average probability computed over the entire

collection is 0.21.

Q4: To what extent are the APIs endpoints compatible?
To assess this we introduce the Compatibility Rate: the total

number of compatible endpoints over the total number of

endpoints in the API. A compatibility rate of 100% on all

the Matching Levels indicates that a match was found for all

endpoints which have schemas that are statically comparable.

More in detail, syntactically compatible APIs have on average

2.31 sink endpoints and 2.33 compatible source endpoints,

which represent in average 37% (sink) and 72% (source) of

the total number of endpoints. When considering the Property-

Name Level or the Data-Type Level the average number of

compatible endpoints drops to 1 (while the median is higher

at 3). The largest API which is fully compatible (100%

compatibility rate) is a source API with also the largest number

of compatible endpoints (23).

V. DISCUSSION

Q1: How directly composable are Web APIs? Out of all

possible pairs of APIs, we found 511,563 pairs (0.12%)

which correspond to a Data-Type and Property-Name Level

compatible match. It remains to be seen how many of these

can be composed in a meaningful way, but at least a Mashup

developer evaluating such recommendations will not have to

worry about whether the JSON payloads can be successfully

transferred. When relaxing the matching level, the proportion

421

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 13,2023 at 17:14:07 UTC from IEEE Xplore. Restrictions apply.

Syntax level Matcher

if

Irrelevant properties
removal

Complex
 data types

Complex Operators
Simplification

Semantic level Matcher

Schemas properties
 sorting

Schemas properties
 labels abstraction

Canonical Schemas Transformer

compatibility
possible compatibility
no compatibility

CF : Canonical Form

CF

Syntax and Semantic level

Semantic level

Syntax level

CF
Request/Response

Schema

Primitive
 data types Semantic and Syntax

level Matcher

CF

For each request
schema

Canonical
Schemas

 Transformer

inputs

For each response
schema

Canonical
Schemas

 Transformer

schemas

 Matcher

Figure 6. Schemas matching levels and canonical form transformation overview

Table V
CLASSIFICATION OF COMPATIBLE APIS AND ENDPOINTS

Matching Level Type #Source #Sink #(Sink ∩ Source) #(Sink ∪ Source)

A
P

Is

Property-Name Complex 11,236 6,566 6,171 11,631

Data-Type
Complex 19,062 8,974 8,084 19,952
Primitive 7,086 1,764 1,706 7,144

Data-Type & Property-Name Complex 4,010 3,821 3,693 4,132

Total Number of APIs in the collection 20,587

E
n
d
p
o
in

ts

Property-Name Complex 11,413 6,601 6,234 11,780

Data-Type
Complex 34,032 12,312 11,906 34,438
Primitive 12,306 8,453 4,960 15,799

Data-Type & Property-Name Complex 4,038 3,901 3,778 4,161

Total Number of Endpoints in the collection 364,604

of matches increases slightly (0.71% for Property-Name Level

but still directly composable and 5.89% for Data-Type Level

with the need to introduce property name mappings).

Q2: Are most APIs compatible on a syntactic or Property-
Name Level? We found that a large majority of the APIs

(92.6%) is syntactically compatible, where 4,132 of them are

also Semantically compatible. Instead, only 56.6% of the APIs

have at least one endpoint that is only semantically compatible.

This implies that primitive data type conversions are likely to

be less frequently required than property name mappings to

compose APIs with only Property-Name Level or Data-Type

Level matches.

Q3: What is the likelihood that a random pair of APIs has

at least one compatible endpoint? On average, we found that

approx. 21% of APIs have at least one compatible endpoint

according to the most strict compatibility level (Data-Type &

Property-Name). We did not have any expectations about the

result, which is remarkable considering that APIs are published

independently on the Web and do not always comply with data

modeling standards. By analyzing the sample of Web APIs

collected in this study, we also confirmed our expectation that

such probability increases with the size of the API. Further

study is needed to determine whether this result is sensitive to

the size of the sample of APIs considered. As the number of

APIs found on the Web keeps increasing, does the probability

that they are compatible remains constant?

422

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 13,2023 at 17:14:07 UTC from IEEE Xplore. Restrictions apply.

Table VI
NUMBER OF COMPATIBLE ENDPOINTS AND COMPATIBILITY RATES ACROSS ALL APIS

Metric Role Matching Level Min Avg Max StdDev Median Q1 Q3

C
o

m
p

at
ib

le
E

n
d

p
o

in
ts Sink

Property-Name 1 1.00 4 2.25 3 1 4
Data-Type 1 2.31 5 3.28 3 1 5
Data-Type & Property-Name 1 1.02 4 1.62 2 1 2

Source
Property-Name 1 1.02 23 3.69 3 1 5
Data-Type 1 2.33 23 3.38 5 2 8
Data-Type & Property-Name 1 1.00 23 4.91 3 1 5

C
o

m
p

at
ib

il
it

y
R

at
e

Sink
Property-Name 0.12 0.28 1.00 0.51 0.24 0.19 0.76
Data-Type 0.31 0.37 1.00 0.40 0.58 0.35 0.87
Data-Type & Property-Name 0.11 0.18 1.00 0.55 0.11 0.11 0.33

Source
Property-Name 0.24 0.39 1.00 0.37 0.33 0.24 0.66
Data-Type 0.38 0.72 1.00 0.28 0.87 0.51 0.91
Data-Type & Property-Name 0.22 0.28 1.00 0.52 0.33 0.22 0.54

0 100 200 300 400 500

0

0.5

1

#Endpoints

P
ro

b
ab

il
it

y

0 100 200 300 400

#APIs

avg = 0.68

avgw = 0.21

Figure 7. Probability that a random pair of APIs of a given size has at least
one matching endpoint

Q4: To what extent are the APIs endpoints compatible?
The number of Compatible Endpoints in an API is rather

low, depending on the Matching Level. It goes from an

average of two endpoints per API in the case of syntactic

compatibility, to an average of one endpoint per API in the

case of both semantic and syntactic compatibility or only

semantic compatibility. The compatibility rate is also higher

in the case of Data-Type Level matching where the average

Compatibility Rate is of 37% (sink) and 72% (source) against

lower rates in the case of Property-Name Level: 28% (sink)

and 39% (source) and Data-Type & Property-Name Level:

18% (sink) and 28% (source).

VI. THREATS TO VALIDITY

External Validity. OAS descriptions are often manually

created and edited, which makes them prone to errors and

inconsistencies. In our data selection phase all invalid speci-

fications were eliminated from the study. The specific sample

of API descriptions analyzed may limit the external validity

of the results, especially regarding the probability of finding

a random pair of compatible APIs.

Internal Validity. Higher-level semantics descriptions are

not generally found in OAS, making it impossible to take those

into account in the compatibility definition at the core of our

study. In some data models, a format qualifier is found that

could be used in addition to the type information. However,

the wide variety of format values found in the collection made

it impractical to rely on this additional metadata.

In JSON Schema, by default any additional properties

are allowed unless the additionalProperties field is

explicitly set to false. However, we noticed a low usage

of this construct in the extracted set of schemas only 21%,

143,341 out of 679,256 schemas of complex data type use

the field). The matches found in this study did not consider

the presence of such additional properties, which may over-

estimate the results.

VII. RELATED WORK

This empirical study is inspired by [12]: an approach to

determine how two APIs can be directly composed based on

analyzing the schemas of the JSON data they produce or

consume at the syntactic level only. In our work, we also

consider the Property-Name Level and apply the matching

rules systematically to a large collection of real-world APIs.

One of the empirical studies most related to our work

is [22], where the authors study a set of 8,399 GraphQL

APIs with schemas written in Schemas Description Language

(SDL). They found a lack of conformity to naming conversions

and low adoption of pagination but did not systematically in-

vestigate schema compatibility. While in this work, we search

for equivalent response/request schemas, in [?] we performed

an empirical study to detect equivalent structural HTTP APIs

fragments. In [17], the authors studied the relationship between

the APIs structures and their data models, starting from a large

set of APIs specifications (42,194 OAS).

To our knowledge, there exist no tools to compare JSON

schemas considering property names and data types separately.

Existing tools such as [1] consider both, without handling the

challenges we identified related to alternative JSON structures

to represent the same data types. Using the JSON Schema

compare tool, the schemas 1 , 2 , 3 , and 4 are considered

distinct. Thanks to the canonical transformation, our com-

423

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 13,2023 at 17:14:07 UTC from IEEE Xplore. Restrictions apply.

parison strategy can also detect possible matches with the

oneOf or anyOf operators where the destination schema is

a subset of the source schema. A similar approach, also based

on canonical transformations of schemas, is used in [10] by a

tool that detects data compatibility bugs based on JSON sub-

schemas checking.

In this study, we do not assume that if two schema attributes

have the same name then they are semantically equivalent.

However, if their types are also similar, or if the sink attribute

is of string data-type, then they are safely composable, but

still not evident that such pair of endpoints can be involved

in a meaningful API composition. Having additional semantic

knowledge about the API data model [5] would facilitate the

automatic determination of whether the endpoints with com-

patible schemas can also be composed. This is the goal of the

authors of JWASA [21], a tool that helps developers to semi-

automatically embed semantic knowledge to an API descrip-

tion written in natural language. Based on the description, the

tool generate a JSON document to annotate the API element

using JSON-LD [19], which can be later seamlessly translated

to RDF, thus, allows over-passing semantic interoperability

obstacles with the world of linked data. JWASA facilitates the

task of generating a formal API semantic artifact, however,

deciding the vocabulary to use for the annotations remains a

pure manual task, and requires business domain knowledge to

accurately map schema elements to ontology languages [9]. To

overcome the need for this manual task, noticeable emerging

Mashups recommendation tools [6], [11], [15], [23] proposed

by researchers, employ Machine Learning and Deep Learning

models exploiting datasets of known Mashups.

VIII. CONCLUSION

In this paper, we present the results of a study to assess

the compatibility of a large collection of Web APIs. The

work makes use of a novel large-scale schema compatibility

checking tool for statically checking whether two OAS schema

definitions are compatible by matching property names and/or

data types. We studied the potential composability of a large

collection of 20,587 Web APIs through their OpenAPI descrip-

tions, gathered from public sources. This was performed by

matching the schemas of produced or consumed data by each

distinct pair of endpoints. The matching was done considering

schema property names and data types both separately and

together. We found that a large majority of the APIs (92.6%)

have at least one compatible endpoint of which the schemas

match at least on the data-type level, and the average number

of this compatible endpoints is equal to to 2 endpoints per API.

We also looked for stricter schemas compatibility by matching

them on both property names and types and found that, on

average, an API has a 21% probability that at least one of its

endpoints can be composed with no need of introducing data

conversion adapters as it provides (or consumes) data that is

compatible with the data that is consumed (or provided) by

another endpoint found in the same or different APIs.

REFERENCES

[1] Json schema compare. https://github.com/mokkabonna/json-schema-
compare, 2017.

[2] JSON Schema. https://json-schema.org/, 2022.
[3] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web

Services: Concepts, Architectures and Applications. Springer, 2003.
[4] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani,

and Stefanie Scherzinger. An empirical study on the “usage of not”
in real-world json schema documents. In International Conference on
Conceptual Modeling, pages 102–112, 2021.

[5] Robert Battle and Edward Benson. Bridging the semantic web and
web 2.0 with representational state transfer (REST). Journal of Web
Semantics, 6(1):61–69, 2008.

[6] Junwu Chen, Ye Wang, Qiao Huang, Bo Jiang, and Pengxiang Liu.
Open apis recommendation with an ensemble-based multi-feature model.
Expert Systems with Applications, 196:116574, 2022.

[7] Florian Daniel and Maristella Matera. Mashups. Springer, 2014.
[8] Giusy Di Lorenzo, Hakim Hacid, Hye-young Paik, and Boualem Bena-

tallah. Data integration in mashups. SIGMOD Rec., 38(1):59–66, jun
2009.

[9] Paola Espinoza-Arias, Daniel Garijo, and Oscar Corcho. Mapping the
web ontology language to the openapi specification. In International
Conference on Conceptual Modeling, pages 117–127. Springer, 2020.

[10] Andrew Habib, Avraham Shinnar, Martin Hirzel, and Michael Pradel.
Finding data compatibility bugs with json subschema checking. In
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 620–632, 2021.

[11] Deling Huang, Xialong Tong, and Haodong Yang. Web service rec-
ommendation based on graph attention network (gat-wsr). In 2022
International Conference on Computer Communication and Informatics
(ICCCI), pages 1–5. IEEE, 2022.

[12] Javier Luis Cánovas Izquierdo and Jordi Cabot. Composing json-based
web apis. In International Conference on Web Engineering, pages 390–
399. Springer, 2014.

[13] Yong-Ju Lee and Jae-Soo Kim. Automatic web api composition for
semantic data mashups. In 2012 Fourth International Conference on
Computational Intelligence and Communication Networks, pages 953–
957. IEEE, 2012.

[14] Chune Li, Richong Zhang, Jinpeng Huai, and Hailong Sun. A novel
approach for api recommendation in mashup development. In 2014
IEEE International Conference on Web Services, pages 289–296. IEEE,
2014.

[15] Sixian Lian and Mingdong Tang. Api recommendation for mashup
creation based on neural graph collaborative filtering. Connection
Science, 34(1):124–138, 2022.

[16] Hye-Young Paik, Angel Lagares Lemos, Moshe Chai Barukh, Boualem
Benatallah, and Aarthi Natarajan. Web service implementation and
composition techniques, volume 256. Springer, 2017.

[17] Souhaila Serbout, Fabio Di Lauro, and Cesare Pautasso. Web apis
structures and data models analysis. In Proc. International Conference
on Software Architecture (ICSA). IEEE, 2022.

[18] Souhaila Serbout, Cesare Pautasso, Uwe Zdun, and Olaf Zimmermann.
From openapi fragments to api pattern primitives and design smells. In
26th European Conference on Pattern Languages of Programs, pages
1–35, 2021.

[19] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and
Niklas Lindström. Json-ld 1.0. W3C recommendation, 16:41, 2014.

[20] The Open API Initiative. OAI. https://openapis.org, 2021.
[21] Xianghui Wang, Qian Sun, and Jinlong Liang. Json-ld based web api

semantic annotation considering distributed knowledge. IEEE access,
8:197203–197221, 2020.

[22] Erik Wittern, Alan Cha, James C Davis, Guillaume Baudart, and Louis
Mandel. An empirical study of GraphQL schemas. In Proc. ICSOC,
pages 3–19, 2019.

[23] Lina Yao, Xianzhi Wang, Quan Z Sheng, Boualem Benatallah, and
Chaoran Huang. Mashup recommendation by regularizing matrix
factorization with api co-invocations. IEEE Transactions on Services
Computing, 14(2):502–515, 2018.

[24] Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel. Under-
standing mashup development. IEEE Internet computing, 12(5):44–52,
2008.

424

Authorized licensed use limited to: Universita della Svizzera Italiana. Downloaded on September 13,2023 at 17:14:07 UTC from IEEE Xplore. Restrictions apply.

