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Abstract. The current paper presents a novel Command Line Interface
(CLI) tool called ExpressO. This tool is specifically developed for devel-
opers who seek to analyze Web APIs implemented using the Express.js
framework. ExpressO can automatically extract a specification writ-
ten in OpenAPI, which is a widely used interface description language.
The extracted specification consists of all the implemented endpoints,
response status codes, and path and query parameters. Additionally,
apart from facilitating automatic documentation generation for the API,
ExpressO can also automatically verify the conformity of the Web API
interface to its implementation, based on the Express.js framework.

The tool has been released on the npm component registry as
‘expresso-api’, and can be globally installed using the command:

npm install -g expresso-api.

Keywords: OpenAPI Specification · REST API · Express.js ·
Documentation generation

1 Introduction

In Continuous Software Development (CSD), the usage of modern software archi-
tecture tooling [18] and executable documentation is highly recommended [28,
30]. Ensuring that documentation is continuously consistent with the implemen-
tation throughout the software development cycle is required in order to avoid
informal communication and tacit knowledge sharing between the software devel-
opment team members [21]. Web APIs are a particular type of software for which
producing up-to-date documentation is a must because it is a crucial artifact to
support the API’s learnability by developers [24]. Documenting small systems
may be trivial, however when scaling up the size of the backend, producing and
maintaining the desired documentation can prove challenging and quite resource-
intensive.

As an attempt to solve this problem, ExpressO is a tool that helps
Express.js [29] developers to generate documentation for their APIs taking noth-
ing as input other than the backend code they already wrote. The obtained
documentation is compliant with the OpenAPI specification [1]. While the auto-
matically generated artifacts can be manually augmented with natural language
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descriptions, easing the rapid generation of API documentation, ExpressO can
also check the consistency of the interface extracted from the implementation
with the existing documentation, thus highlighting gaps between the interface
documentation and the corresponding implementation code.

We target the Express.js framework due to its wide adoption and the lack
of tools that can extract the OpenAPI description only based on the imple-
mentation code itself. Existing tools such as Express OpenAPI [27] or swagger-
autogen [2] require additional code annotations or time-consuming configuration
steps to produce similar results.

2 Background: OpenAPI

APIs can be described using natural language, informal models, or general-
purpose modeling languages. There exist also machine-readable Domain Specific
Languages [14] for describing them, such as RAML [3], WADL [17], WSDL [11],
I/O Docs [4], and OpenAPI [1], which gained more importance in the five last
years by being selected as a standard language for APIs description.

For what concerns our tool, OpenAPI describes an API as a set of endpoints
E , which may receive zero or more parameters P and produce one or more
expected responses for each endpoint R.

APIComponents = {c, c ∈ E ∪ P ∪ R}

From now on we call the endpoints, the parameters and the responses: ‘API
Components’.

OpenAPI descriptions comprehend also metadata about the API and descrip-
tion fields with values written in natural language. They also contain detailed
descriptions of operations’ request and response bodies, which can be specified
using JSON Schema when exchanging JSON message payloads.

There is a broad set of emerging tools and approaches centered around the
OpenAPI standard [5]: test cases generation [12,22], API analytics tools [13,26],
as well as implementation code for client skeletons and server stubs (e.g. [23]).
ExpressO focuses on the opposite problem: generating interface descriptions
starting from the implementation code.

In our study, we utilize OpenAPI [20] as the standard target language for
documenting the extracted Web API. To generate a valid OpenAPI specifica-
tion, it is essential to extract all the necessary information from the backend
code to populate the required fields in the OpenAPI metamodel. An example
of such a specification, produced by the OpenAPI Initiative [19], is presented in
Listing 1.1. We have highlighted the API Components that are essential for a
valid specification in green . The fields that are not mandatory but can enhance
the specification’s detail are marked in orange . The optional fields that are
typically written in natural language to provide additional insights about the
API Components are shaded in gray .
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Listing 1.1. Example of OAS3.0. Properties highlighting: green → must-have,
orange → nice-to-have, gray → out of scope / user defined.
1 {

2 "openapi": "3.0.0",

3 "info": {

4 "version": "1.0.0",

5 "title": "Swagger Petstore",

6 "license": {

7 "name": "MIT"

8 }

9 },

10 "servers": [

11 {

12 "url": "http://petstore.swagger.io/v1"

13 }

14 ],

15 "paths": {

16 "/pets": {

17 "get": {

18 "summary": "List all pets",

19 "operationId": "listPets",

20 "tags": [

21 "pets"

22 ],

23 "parameters": [

24 {

25 "name": "limit",

26 "in": "query",

27 "description": "How many items to return at one time (max 100)",

28 "required": false,

29 "schema": {

30 "type": "integer",

31 "format": "int32"

32 }

33 }

34 ],

35 "responses": {

36 "200": {

37 "description": "A paged array of pets",

38 "headers": {

39 "x-next": {

40 "description": "A link to the next page of responses",

41 "schema": {

42 "type": "string"

43 }

44 }

45 },

46 "content": {

47 "application/json": {

48 "schema": {

49 "$ref": "#/components/schemas/Pets"

50 }

51 }

52 }

53 }

54 }

55 }

56 }

57 }

Omitting the human-readable fields, such as description, summary, and
tags, which may require user input, our proposed approach discussed in Sect. 5
can generate a rudimentary specification that covers all the essential fields,
describing an endpoint in terms of its path, HTTP methods, and response



32 S. Serbout et al.

codes. Additionally, by conducting a static analysis of the routes, ExpressO can
obtain the relevant parameter details.

3 Related Work

While other methods have attempted to extract structured REST API docu-
mentation from unstructured sources [10], our work focuses on generating docu-
mentation directly from the source code, assuming that the API has been imple-
mented using the Express.js framework.

Unlike Express OpenAPI [27], which requires the user to provide an OpenAPI
description containing the API’s metadata as input and explicitly annotate each
Express.js route with the corresponding OpenAPI metadata, ExpressO does not
necessitate any input beyond the Express.js backend code. In the former case, the
developer can add human-readable descriptions to be included in the resulting
API, but the interface and implementation specifications are mixed in the same
source code. Developers must rewrite the information already present in the
previously written endpoint code. Express OpenAPI then combines the pieces
to produce a coherent document that is served statically.

On the other hand, swagger-autogen [2] can be run with the backend to
generate documentation each time the backend is executed. These modules are
independent of any backend framework and assume that the backend implements
routes following the conventions of Express.js.

Table 1 provides an overview of the input requirements for ExpressO, Express
OpenAPI, and swagger-autogen. The comparison results of the ExpressO’s Com-
parator are more granular and detailed than the ones produced by similar tools.
OAS Diff [15] only provides a count of the modified or added API Compo-
nents. Instead, OpenAPI Diff by Microsoft Azure [16] has as main goal
to detect breaking changes as it outputs a report that classifies the changes affect-
ing each API Component. An in comparison with other JSON/YAML diff tools
ExpressO’s Comparator provides a more domain specific reports grouping the
detected differences by API components: endpoints, parameters, and responses.

4 Use Cases

In the design of the tool we envisioned the following use cases:

Table 1. Inputs required by different OpenAPI generation tools

Code annotations Basic description Config file Backend code
Express OpenAPI 2015 Yes Yes No Yes
Swagger-autogen 2020 No No Yes Yes

ExpressO 2022 No No No Yes
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1. Helping developers to keep both the implementation code and the interface
documentation continuously synchronized; For that, the user can use the
‘expresso generate’ CLI command to generate the new specification
corresponding to the current version of the implementation.

2. Helping API designers to verify whether the implementation matches the
structure they modeled and track the progress of an API development project;
This corresponds to the CLI command ‘expresso compare’ which com-
pares two given input specifications, or the ‘expresso test’ which gener-
ates an OpenAPI specification for the backend then compares it to an input
reference specification. The tool will generate both a human-readable and a
machine-readable report about what has been matched and what is missing
for each specification.

3. Making it easier for developers to detect breaking changes by using ExpressO
to compare the OpenAPI description of the current version of the API with
a previously generated specification, also using the ‘expresso compare’.
The comparison report can be used as ground truth to perform Regression
Testing on the new changes;

4. Supporting researchers who want to perform empirical studies on real-world
APIs. Using ExpressO they can automatically extract well-formatted knowl-
edge from the Express.js source code of a large set of projects, by simply
running the ‘expresso generate’ for each of the projects.

5 ExpressO

5.1 Approach

ExpressO is a command-line interface (CLI) tool designed to extract the essential
components from the source code of an Express.js project and produce a valid
OpenAPI specification that describes the REST API. The tool uses a combi-
nation of static and dynamic analyses. The dynamic analysis involves injecting
a Proxy component, which replaces the express npm package in the input
project. This Proxy is used to intercept calls that configure the API routing
table and extract the code of the corresponding function handlers. The Ana-
lyzer then performs static analysis on this code to extract information about the
request parameters and response status codes.

The only input that the system requires to generate a specification for a
REST API is the original source code. ExpressO first identifies the application
entry point file and creates an abstract syntax tree that is scanned for all usages
of the Express app that listens on a port. Once all the source files have been ana-
lyzed, a data structure holds the properties of the respective endpoints, routers,
and applications.

To avoid altering the source code, ExpressO replaces the express.js NPM
package with an instrumented version of the same, called the Proxy. The Proxy
acts as an intermediary between the system and the original express function-
ality, allowing access to the latter whilst keeping track of calls being made by
the ‘Express.Application’ object. By intercepting every call made to the Express
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Fig. 1. Logical view of ExpressO

framework, the Proxy collects data in a data structure that is able to store all the
information needed to reconstruct the API description. Specifically, the Proxy
builds the API routing table by linking each endpoint path and method combina-
tion with the corresponding handler function. Then, by running a static analysis
on the handler code, ExpressO retrieves the response codes and parameters of a
given endpoint.

The hybrid approach employed by ExpressO, which combines both static
and dynamic analysis techniques, enables the tool to extract the endpoints of
deeply modular backends without having to statically analyze their entire code.
While static analysis alone requires navigation through the imports and exports
of several files, which can be a slow process when traversing large code-bases, the
dynamic analysis component of ExpressO allows for more efficient extraction of
endpoint information. By intercepting every call made to the Express framework,
the Proxy component of ExpressO collects the data needed to reconstruct the
API description without the need for time-consuming static analysis of all the
backend code.

5.2 Architecture

We depict an overview of the logical view of the architecture of ExpressO in
Fig. 1. In the rest of this section, we explain in detail the different software
components part of the ExpressO tool, which will be separately demonstrated.

CLI Application. ExpressO utilizes the CLI Application interface to provide
access to its functionalities. The available command lines are illustrated in Fig. 2.
In the simplest case, where developers want to generate a specification with-
out any customization, they can run the tool with the command expresso
generate, as most parameters have default values. Additionally, other avail-
able commands are presented in Fig. 2.

Replacer. The Replacer module is responsible for generating a functioning
copy of an Express.js backend that can be initiated by the CLI Application
module as a Child Process. This module performs an additional task of substi-
tuting the original express package inside the node_modules directory with
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the Proxy component. This replacement enables the working copy to utilize
our Proxy module in the same way as the original express module, without
requiring any modification to the input code. Moreover, the ExpressO module
is retrieved from the node_modules of the npm global packages, which must
be present to utilize the CLI Application. This approach eliminates the need to
install expresso-api both locally and globally, reducing the burden on users
to maintain both installations up-to-date.

Fig. 2. ExpressO Command Line Help

Proxy. The Proxy module plays a crucial role in intercepting all calls made to
the Express framework and storing relevant information about the routes and
corresponding request handler code. This information is then used to extract
the API components necessary to generate a valid OpenAPI specification. It is
important to note that the Proxy intercepts only the route configuration setup
calls on the express framework itself and not the calls made to actual API end-
points by test clients. In other words, the Proxy operates at the backend start-
up phase and captures the necessary information about the routes and handlers
without actually executing them. While the command used to start the back-
end can be customized, the default command used in the experiments was npm
start with no additional inputs.

Child Process. Upon invoking the Replacer and creating a working copy, the
CLI Application generates a Child Process that executes the modified version of
the project with the replaced module, including the Proxy. Our approach involves
terminating the Child Process upon the first write-out to the intermediate model
representation file.

Analyser. The analyzer module is responsible for parsing the intermediate
model representation, which is stored as a JSON file, back into a working data
structure. This allows the representation to be statically analyzed using the npm
package abstract-syntax-tree [6].

Regarding parameters, for the first release of ExpressO, we limit the definition
of parameters to two types: Path and Query parameters. Other parameter
types, such as Cookies and Headers, are not supported in the furrent version of
the tool.
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When an endpoint is retrieved, the parameters used within that endpoint are
detected by statically analyzing the route.

Comparator. The comparator module is designed to read and compare two
OpenAPI descriptions (APIsource and APItarget), which can be written in either
YAML or JSON format and may be in similar or different versions of OpenAPI.
The comparison is done based on the criteria described in the rest of this section.

5.3 API Comparison and Coverage Report

While comparing the two API descriptions, the comparator computes and
reports the following:

– Matched: the set of API Components present in both descriptions.

M = APIsource ∩ APItarget

– Partially matched: when some API path parameters are present in both
specifications, but their names do not exactly match.

PM = {c, c ∈ APItarget ∧ ∃c′ ∈ APIsource|c ≈ c′}

The partial matching feature is implemented to address discrepancies in the
naming of path parameters between the Express.js routes in the code and
the corresponding paths in the target OpenAPI description being compared.
This is because some developers may use different names for the same path
parameter in the code and the OpenAPI description, even though they are
semantically equivalent or referring to the same parameter. This can create
issues during the comparison process.

To address this, when performing the match, parameter names are not
required since path parameters are positional and their name serves only
to identify them as they are referenced from the code. Therefore, the names
used in the target specifications are usually human-comprehensible, while the
names generated from the implementation code are more direct.

For example, consider a path pi : /users/userId for an endpoint Ei in
APIsource, and a path p′

j : /users/username for an endpoint E′j in
APItarget. Although the parameter names are different, these paths repre-
sent the same endpoint template with a fixed /users/ segment followed
by one parametric segment. Hence, they should be matched: pi ≈ p′

j . Con-
sequently, we consider that the endpoints are partially matching: Ei ≈ E′

j ,
irrespective of the path parameter names.
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Fig. 3. Snapshot of a human-readable coverage report example generated by ExpressO
for an Express.js project found on GitHub [7]
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– Missing: elements that are only present in the target specification;

MISS = {c, c ∈ APItarget ∧ c /∈ APIsource}

– Additional: elements that are only present in the compared specification;

ADD = {c, c ∈ APIsource ∧ c /∈ APItarget}

Although the comparator module can be utilized to compare any two HTTP
APIs described using OpenAPI, its primary purpose is to assess the level of
coverage achieved when comparing the generated description with a ground truth
description. To achieve this, we have established two metrics to evaluate the
coverage level of each API component:

– Strict Coverage: how many matched API Components over the total num-
ber of APIsource Components;

Cstrict =
size(M)

size(APIsource)

– Broad Coverage: how many matched and partially matched API Compo-
nents over the total number of APIsource Components;

Cbroad =
size(M) + size(PM)

size(APIsource)

The objective of these metrics is to accurately quantify the degree to which
generated documentation matches the ground truth (the specification found in
the software repository). While manually-created documentation can be more
exhaustive, our primary focus is on ensuring that we can accurately identify all
endpoints along with their associated responses and parameters.

In addiction to printing the coverage metrics in machine-readable JSON file
format, this module also serves as a reporting tool that outputs the comparison
data in a human-readable format, producing a report in the terminal (as shown
in Fig. 3).

6 Evaluation
In [25], we presented an extensive evaluation of ExpressO using a dataset of 91
Express.js projects collected from GitHub. These projects have been selected
because they include the OpenAPI description of the corresponding API that
we used to compute the coverage metrics, using the original specification shared
in the software repository as a ground truth.

Web first selected projects that can be directly run with an npm install
&& npm start command, then filtered the ones containing an OpenAPI
description file. We then remove from the dataset the projects that take more
than 10s to start with an npm start. In Fig. 4 we show in details the dataset fil-
tering decision tree, and in Table 2 we show the APIs size distribution computed
from the OpenAPI descriptions found in each of the 91 remaining projects.
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Fig. 4. The decision tree followed to filter the Express.js projects used in the evaluation
of ExpressO

Table 2. Distribution of number of paths and operations metrics

µ σ Min 25% 50% 75% Max
#Paths 4.42 4.18 1 2 3 5 30
#Operations 6.38 6.92 1 2 5 7 53

Fig. 5. Cstrict and Cbroad computed values distribution in 91 projects
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In Fig. 5 it can be observed that the population of parameters seems to
be smaller compared to that of endpoints and responses. Moreover, considering
partial matches enables ExpressO to reach a higher coverage level.

As swagger-autogen requires a time-consuming manual configuration step
for every new project, we restricted our study to a smaller subset of 23 working
projects for comparative evaluation, after verifying the correctness of the pro-
duced output. Although ExpressO could generate valid specs for all 91 projects,
it took us 33 attempts on different repositories to generate 23 usable specifica-
tions. In 30% of cases, swagger-autogen failed to produce valid documentation.

6.1 API Components Coverage

Fig. 6 depicts the computation of the Cstrict metric by comparing the specifi-
cations generated by ExpressO and swagger-autogen against the specifications
found in the projects which are considered a ground truth. A values of 1 indicates
that all the features in the original specification were matched, while a value of
0 indicates that none of the features were matched.

Fig. 6. Computed values of Cstrict of ExpressO’s vs. swagger-autogen

6.2 Performance

Time Taken by ExpressO. Because we are able to profile our system, when
we ran it on the dataset of 20 repositories we were able to differentiate between
time taken by the Replacer, Analyzer and Child Process components separately.
This gives us the median execution time breakdown visualized in Fig. 7: Child
Process 2017 ms; Analyzer 123 ms;
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Fig. 7. Timeline of expresso generate command at the component level

Fig. 8. Timeline of Replacer component

As we can see from Fig. 8, the repository size has a very minor effect on the
overall time.

ExpressO vs. Swagger-Autogen. While in the case of ExpressO, the time
that matters is the one it takes to analyze code, and generate the specification,
in the case of swagger-autogen to produce a specification it is needed to keep in
mind that it involves manual configuration. We distinguish: (1) Time To Start
(TTS): the time elapsed from when a project is cloned and installed, to the
moment that we are able to run our analysis; (2) Time To Run (TTR): the time
taken to analyze the backend and produce the specification.

In the following results, our main focus was on TTR, particularly in compar-
ing the performance of Analyzer with swagger-autogen. To evaluate the TTR of
swagger-autogen accurately, we need to consider the time required to set up the
swagger.js file by configuring it correctly. This is a manual activity that varies in
duration depending on the user’s experience with swagger-autogen and familiar-
ity with the backend. In the initial run, we consider our system to have superior
performance if a user cannot complete the necessary steps to use swagger-autogen
within 5.8 s (Table 3). In subsequent runs, this manual step is no longer necessary
to be fair.

Table 3. Performance Comparison (Average Execution Time)

TTS TTR Total
swagger-autogen >0 265 ms >265 ms
expresso 5917 ms 123 ms 6040 ms
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ExpressO is not affected by the total size of the input code in the same
way as a completely static analysis, as it only needs to listen for calls made
to the Express.js framework, instead of parsing all the project files and walking
through its entire structure. This can be observed in Fig. 9 and Table 4, where we
calculate the Pearson correlation between the express project size measured in
lines of code (LOC) and the time taken by the tools (TTR), in order to establish
if there is a statistical correlation between these two variables. The first row of
the table shows that there is a strong correlation between the LOC of a project
and the time taken by swagger-autogen, while the correlation between the API
size (number of endpoints) and the TTR of ExpressO is medium.

Fig. 9. Logarithmic scatter plot comparison between Analyzer (orange) and
swagger-autogen (green) timings, with linear trendlines. The size of a datapoint
relates to the number of declared endpoints

Table 4. Corr. of Time To Run (TTR) against implementation size (LOC) and output
API size (Endpoints)

Correlation p-value
LOC swagger-autogen 0.9999 0.000
LOC expresso –0.2292 0.3310
Endpoints expresso 0.4841 0.030
Endpoints swagger-autogen –0.220 0.3501
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7 Conclusion

In this paper, we introduce ExpressO, a tool that automatically extracts a skele-
ton of OpenAPI descriptionsfrom the corresponding JavaScript implementation
based on the Express.js framework. Unlike existing automatic generation tools
such as swagger-autogen, ExpressO does not require any time-consuming manual
configuration and can be immediately used on any Express.js compliant project.
While most existing tools for extracting interfaces from implementation support
a code-first approach to API development, where the implementation is manu-
ally annotated with metadata that should be extracted and published as part of
the OpenAPI description, ExpressO supports an API-first approach [9]. It can
compare the API description extracted from the code with a given OpenAPI
description to verify that the paths, operations, response codes, and parameters
are implemented as advertised. ExpressO instead supports an API-first app-
roach [9], as it can compare the API description extracted from the code with
a given OpenAPI description to check whether the paths, operations, response
codes, and parameters are indeed implemented as advertised.

Although currently, the tool only supports Express.js backends, its hybrid
approach combining static and dynamic analysis can be applied to other back-
end frameworks whose route configuration settings can be instrumented and
intercepted similarly. We aim to extend the tool to support a broader range of
inputs (APIs whose backend is implemented using other frameworks and other
programming languages) and outputs (API descriptions conforming to other
specifications, e.g. RAML). ExpressO is freely available on the npm registry
under the “expresso-api” name [8].

Acknowledgements. This work was partially supported by the SNF with the API-
ACE project number 184692.
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