Web APIs Structures and Data Models Analysis

Souhaila Serbout
Software Institute
Universita della Svizzera Italiana
Lugano, Switzerland

souhaila.serbout @usi.ch

Abstract—Microservice architectures emphasize keeping com-
ponents small, to foster autonomy, low coupling, and independent
evolution. In this large-scale empirical study, we measure the size
of Web API specifications mined from open source repositories.
These APIs are modeled using the OpenAPI Specification (OAS),
which, in addition to documenting the offered operations, also
contain schemas definitions for the data exchanged with the API
request and response message payloads. This study has as a goal
to build empirical knowledge about: (1) How big and diverse
are real-world web APIs both in terms of their operations and
data, (2) How different API structures use and reuse schema
definitions. By mining public software repositories on Github,
we gathered 42,194 valid OAS specifications published between
2014-2021. After measuring the size of API structures and their
data model schemas, we found that most APIs are rather small.
Also there is a medium correlation between the size of the APIs’
functional structures and their data models. API developers do
reuse schema definitions within the same API model.

Index Terms—Web APIL, OpenAPI, Data Model Schemas, API
Size Metrics, API Structure

I. INTRODUCTION

Every open software architecture has an API (Application
Programming Interface) which makes it possible for exter-
nal clients to access the services it provides. Unless self-
contained, every software architecture also reuses and depends
on multiple external APIs. APIs are found in microservice
architectures [14], making it possible to clearly delimit the
boundary of each service [14]], which can be independently
operated and autonomously evolved. In this paper we focus on
Web APIs, which make use of the HTTP protocol to exchange
messages across the network [12]]. These are commonly found
in all kinds of application domains, for example, to remotely
access and provision Cloud computing infrastructure, read and
post media on social networks, or enable same-day payments
in digital banking [9].

APIs are a critical design element which affects how de-
velopers select, use and reuse a software component [15].
Writing accurate and detailed API documentation is essential
in order to bridge the gap between API providers and their
consumers and sharing the needed knowledge to correctly use
them. The available documentation and the perceived ease of
use are also a relevant factor for developers to decide to use
or not a specific API [8] as well as other aspects such as

This work is funded by the SNSF, with the API-ACE project nr. 184692.

Fabio Di Lauro
Software Institute
Universita della Svizzera Italiana
Lugano, Switzerland

fabio.di.lauro@usi.ch

Cesare Pautasso
Software Institute
Universita della Svizzera Italiana
Lugano, Switzerland

c.pautasso@ieee.org

the quality of service guarantees [22]], popularity, provider
reputation, performance [1]], pricing plans [4] and security.

A growing number of Web APIs are described using the
OpenAPI language [18]. Previously known as Swagger, this
JSON/YAML-based Interface Description Languages (IDL) is
used to enumerate the operations offered by the API (in terms
of Web addresses or URI path templates and HTTP method
combinations) as well as to describe the data model of the
API (mainly in terms of JSON schemas). OpenAPI was origi-
nally introduced to automate documentation generation tasks.
Nowadays it is at the core of a growing API tooling ecosystem,
including support for code generation [7], testing [6], as well
as model analysis [2} [17] and validation.

In this paper we present an empirical study [3] over a large
collection of Web APIs performed by statically analyzing their
OpenAPI descriptions mined from open source repositories.
We are interested to answer the following research questions:
Q1: How big are the API models?

Q2: Does the API style affect the API size?

Q3: What is the relationship between the sizes of the func-
tional structure and data structure of an API?

Q4: How developers reuse schemas within the same API?

Observing the size and the style of real-world Web APIs
is important as they are among the factors impacting API
governance [3], developer experience [8], learnability [[13]] as
well as service granularity [19].

To answer these questions we first need to define how to
measure the size of a Web API specification. We then proceed
to characterize the APIs in the collection according to the
popularity of the artifacts describing them, as well as to how
the APIs make use of the HTTP protocol [16] (distinguishing
between different API styles: read-only or read-write Open
Data, RPC, CRUD and REST).

We find that not all API specifications include both data
and operations. Also, over the entire collection, excluding the
empty API models, the size of the API structure and the
API data model have a correlation which ranges from 0.58
to 0.63, depending on the metric used. Finally, developers
are making use of schema reuse constructs, with some APIs
reusing schema definitions across different operations up to 8
times.

The rest of this paper is structured as follows. Section
presents an overview of the collected API artifacts and how
they were obtained by mining public GitHub repositories.

https://orcid.org/0000-0002-8144-2606
https://orcid.org/0000-0001-6982-9851
https://orcid.org/0000-0002-2748-9665

Section [[II| defines how to measure the size of API description
artifacts. Section describes the analysis results, which are
later discussed in Section We list threats to validity in
section Section summarizes the related work, before
we conclude in Section

II. DATASET

Before presenting the analysis results, in this section we
describe how we obtained and prepared the dataset by crawling
public code repositories on GitHub which included one or
more OpenAPI description files (OAS).

A. Dataset preparation pipeline

The automatic process of creating our dataset and filtering
shown in Figure [I] involves the following steps:

1) Mining GitHub we collected 109,587 OAS files from
66,971 different public software repositories.

2) In version control platforms such as GitHub, users are
allowed to fork repositories, which caused redundancy in the
collected dataset. In order to avoid this potential bias in our
metrics-based analysis, we remove duplicate artifacts reducing
the total amount of OAS to 56,411 files.

3) The OAS can be described in a single file or organized
into different files using references. In case these references
are not available or the file does not pass other validation
rules according to the specification [18], we discard it. This
leaves 42,194 OAS descriptions that conform to the OpenAPI
specification, according to standard validation tools.

4) We extracted API structure and data models and their
corresponding data types from the valid API descriptions,
obtaining a collection of 259,869 different types, 150,027
resource paths, and 194,812 operations.

5) We further filtered the dataset to keep 31,118 valid,
unique, non-empty APIs which make use of JSON payloads.

6) Finally, for each API description, we computed the
metrics described in Section and performed some basic
statistics over them to answer the research questions.

B. Dataset description

The oldest API descriptions in the collection are from
November, 27th 2014. Figure E] shows how the size of the API
collection has been increasing over time since then. Most of
the API descriptions in our dataset (90.5%) have been updated
at least once since 2019, 81.3% have been updated at least
once since 2020, and 55.7% have been updated in 2021. This

API Collection
(109 587 OAS)

e
Unique
Parser and API Collection
Validator
Size >0
media_type: JSON

(56 411 OAS)
Fig. 1: Data preparation pipeline

-~

Valid
API Collection
(42 194 OAS)

Valid, not-empty,
JSON

API Collection
(31118 OAS)

TTT T T T T T T T T I TTI T T T I T T TT T T I T T I TT T T I T I T T T T
1-10° | |——Total 8
—— Valid
—— Invalid
50,000 |- -
0 —————-/,
I e e o |

0

2

2

2

2

2

0

2

2

2

2

2

0

2

2

2

2

20

0

2

2

2

2

2

0

2

2

2

2

2
2019

202

202

202

202

202
2020 - 1

202

202

202

202

202

Fig. 2: Monthly cumulative distributions of valid and invalid
OAS files based on the date of their most recent version

T T T
application/json | EEEEEE—G—— 33,738 |-

application/xml | m 2,433 -
application/x-www-form-urlencoded - m 1,510 I
multipart/form-data | m 1,523 L

text/plain -| m 1,968 -

text/html — B 783 -

image/png —{ 1 312 -

application/pdf | I 199 -

0 2 4
#APL (s

Fig. 3: Number of APIs with valid specification where a
specific media type appears

shows the growing adoption of OpenAPI as an IDL to describe
Web APIs.

Overall, the dataset size of the filtered collection of valid
specifications is 1.2G B with an average OAS file size of
24.3K B. The total number of distinct providers in the collec-
tion is 331. The dataset was collected from 01.12.2020 until
24.10.2021.

In terms of data models, only a minority of APIs does
not use message payloads represented in the JSON format
(Figure [3). In this study we focus on the majority of APIs in
our collection, the ones with a JSON Schema data model.

III. METRICS
A. Metrics definition

In this analytics study we define a set of metrics that
can be applied to measure the size of different parts of an
OAS specification. We distinguish between basic metrics and
indicators. Basic metrics are directly computed by counting
the elements found in each OAS description while indicators
are derived from the metrics to further characterize each API.

The main goal of the metrics are to measure the size of
a Web API described using OAS, in particular concerning
its structure and data model schema. Additionally, we are
interested to measure the rate of internal reuse, e.g., how
many data model schema types are shared among different

operations, as well as to use the number of clones as a proxy
to estimate the popularity of an APIL.
o API Structure Size Metrics

— #Paths: Total number of resources published by the API

— #Operations: The total number of HTTP methods for all
resources provided by the APL

— Depth: Maximum path length (in terms of path segments)

— Breadth: Number of top-level distinct path segments

— Operations per Path (OPP): %.

— HTTP Methods: The number of distinct HTTP methods

across all operations provided by the APIL.
o API Data Model Size

— #Defined Schemas (#DS): schemas can be embedded in
the operations descriptions (e.g, request body of a PUT or
POST method, any method response) or listed separately in
the components section in the case of OAS 3 or in the
definitions section in the case of OAS 2. The #Defined
Schemas metrics counts the total of all the schemas defined
in the OAS file, either embedded in an operation description
or separately defined.

— Embedded Schemas (ES): the proportion of embedded
schemas relative to the total number of defined schemas.

— #Used Schemas (#US): the number of the defined schemas
that are used at least once, i.e., they are referenced directly
or indirectly from an operation request or response.

— Usage Rate (UR) = % the relative amount of the used
schemas out of the defined ones in each API. The goal of
this indicator is to reflect on how many data schemas out
of the total defined one are being actually used. Usage rates
less than 100% indicate the presence of schema definitions
which are not reachable from any operation.

o API Data Model internal reuse

— #Reused Schemas (#RS): The number of the schemas
reused at least once. A reuse is detected when an embedded
schema is redefined or referenced in another operation, or
when a separately defined schemas is referenced more than
once.

— Reuse Rate (RR) = s The number of schemas that
are reused out of the total number the used schemas. The
goal of this indicator is to assess the proportion of schemas
reused at least once out of the used ones. Reuse rates of
0% indicate that every schema is used exactly once.

« API Popularity

— #Clones: the number of exact duplicates found in different
GitHub repositories. We consider that an API is popular
if its specification is forked or pushed in different public
repositories by many users on GitHub. For calculating it we
count the number of time an identical clone is encountered
in the database during the deduplication phase.

#RS

B. Metrics computation Example

In this section we explain the metrics computation through
an example of a real-world API: BigQuery connectionﬂ This

Thttps://cloud.google.com/bigquery/docs/reference/bigqueryconnection/rest/

API allows user to manage BigQuery connections to sources
of external data.

Fig.] visualizes the API model of the BigQuery connection
API, depicting both the structure and the data model of the
API. The graphical notation used to depict the API’s structure
is detailed in [17]], while the data model is represented as
a simplified class diagram. This model is built based on the
latest version (vlbetal) of the OAS description file of the API,
updated on 21 August 2020.

BigQuery connection is a RESTful API, composed of six
paths and eight operations. As in many other APIs, all paths
start with the segment /v1betal indicating the API version.
Since this is the only path segment attached to the root of
the API resource tree, the breadth is equal to one. The longest
path (/vlbetal/parent/connections) is composed of
three segments, thus the depth of the API is equal to three.
The number of Operations Per Path (OPP) is 1.6, since two
paths have more than one method. And, the API uses four
distinct HTTP Methods.

In the case of the GET and the DELETE methods, there are
only data schemas for the response message payloads, while
for the POST and PATCH methods, schemas are used to define
the content of both requests and responses. The specification
of the API contains 17 Defined Schemas (#DS), which are
all of the classes shown in Fig. |4 While 10 of them are the
ones that are directly used by an operation, six are indirectly
used by being referenced from another schema. Only one is
not used, because it is neither referenced directly nor indirectly
by an operation. (Note that the Not Used data schema does
not exist in the original API specification, it is only added for
explanation purposes). All schemas defined in the specification
of this API are being used except the Not Used schema, so
the the usage rate ({'R) is equal to % = 0.94.

We can notice that a few of Data Schemas are
being reused: Connection, Policy, Empty.
Moreover, Connection, Policy have dependencies
to other schemas AuditConfig, AuditLogConfig,
CloudSQLproperties, Binding, Exr, and
CloudSglConnection. Thus, these schemas are also
being indirectly reused, which results a number of nine reused
schemas (RS). This brings the reuse rate RR = % = 0.56.

In the specification file of this API all schemas are defined
in the components section of the file (Listing [I). There are no
schemas embedded in the request or response schema object
of any operation.

Listing 1: Excerpt of the OAS description of the BigQuery
connection, showing an example of schema definition in the
components section

openapi: 3.0.0
servers:
-url: "https://biggueryconnection.googleapis.
— com/’
info:
... Metadata about the API
paths:
... List of paths

https://raw.githubusercontent.com/leonardohra/OpenAPI-analysis/90a2e2aff734adcd7f390052bab5992881c68e48/APIs/googleapis.com/bigqueryconnection/v1beta1/openapi.yaml

API Structure

API Data Model !

{name}/ ™~ Empty LJ
: ' N CloudSqlProperties
' Connection
VoL ~— i
/] Metric ~ Value
D Not Used #Paths 5
(parent}/ connections/ L ListConnectionsResponse #Operations 8
g . Vo GetPolicyOptions Breadth 1
vibeta1/ : : GetlamPolicyRequest Depth 3
‘getlamPolicy/ SN OPP 1.6
{resource}:getlamPolicy, ' oo HTTP Methods 4
Vo AuditLogConfi
foh———> S [Auaicontig] | SO #Defined Schemas 17
{resource}:setlamPolicy/ P #Used Schemas 16
— #Reused Schemas 9
Binding
{resource}:testlamPermissions/ I T Usage Rate 94%
__ $: Reuse Rate 56%
i ‘ ey o [owatipes| [pasoed] [JomtaTypes 1. 2usedarecty TestamparmissonsRequest . Pmbedded Schemas 0%
E [[] ataType 3 used indirectly #Clones 0

DataType 3 [] DataType 4 not used

4— DataType 1 contains a reference

g Response |DataType 1
i 1
H to DataType 3

TestlampermissionsResponse

Fig. 4: Example: BigQuery API model and metrics

" /vlbetal/{name}’:
delete:
description: Deletes connection and associated credential.
responses:
7200":
content:
[/ %!
schema:
$ref: * #/components/schemas/Empty’
components:
schemas:
Binding:
description: Associates ‘members‘ with a ‘role’.
properties:
condition:
$ref: 7 #/components/schemas/Expr’
description: The condition that is associated with this
— binding.

IV. ANALYTICS RESULTS

As we did for the example of BigQuery connection API
(Figure E[), we computed the metrics for all 31,118 API
specifications in our collection which make use of the
application/json media type.

A. Statistics

To see how the data schemas usage in the APIs changes
in function of the number of paths, we plot in Figure [a
rough classification of the APIs depending on whether they
feature zero, one or many paths and schema definitions. We
also consider whether these schema definitions are used.

Figure [j] reveals the existence of 4266 APIs having no
defined schemas in their specifications, but one or many
paths, such as DropX API http://dropx.io/dropx-swagger.yaml

Defined Schemas: Il None [[] One] Many
Il None [One [l Many

Used Schemas:

#Paths

|
0 20

\ \
40 60

#APIs (%)

Fig. 5: API Classes: How many APIs have zero, one or many
Paths? How many of those APIs have zero, one or many
unique defined or used schemas?

provided by dropx.io and the Cisco PSIRT openVuln API
https://api.cisco.com provided by cisco.com. They have re-
spectively 7 and 20 paths, however no defined data schemas.
Another small subset of the dataset (1536 APIs) are the
API specifications having no listed paths but one or many

http://dropx.io/dropx-swagger.yaml
https://api.cisco.com

Min Median Mean Stddev Max

#Paths 1 2 3.98 +7.21 271

#Operations 0 3 5.23 +9.85 357
Breadth 1 1 1.97 +3.02 80

Depth 0 2 2.51 +1.80 19

Operations per path 0 1 1.30 +0.54 8
HTTP Methods 0 2 2.03 +1.23 8
#Defined Schemas 1 3 7.11 £18.69 580
#Used Schemas 0 2 442 +10.64 386
#Reused Schemas 0 1 1.47 +3.83 151
Usage Rate 0% 100% 77% +31% 100%

Reuse Rate 0% 17% 31% +36% 100%
Embedded schemas 0% 0% 27% +40% 100%
#Clones 0 0 0.99 +9.65 459

APIs
0 2,000 4,000

TABLE I: Statistics for all metrics computed over 31118
APIs with media_types: application/json and #Paths> 0 and
#Defined Schemas> 0

schemas. By manually verifying the software repositories of
some specifications, we found out that some developers use
the schema-only API specification for code generation.

While the relative majority of APIs (19418) have multiple
paths and multiple schemas, there is a large number (12723)
with a single path that has at least one schema definition.
Finally, there are 1649 APIs which do not have any paths
nor any schema definitions. These empty API descriptions
have been excluded from the rest of the study as they do not
describe any API structure nor any API data model.

Having delimited the sample in our study, in Table [[] we
show the statistics for the metrics over the API specifications
that represent request and response payloads using JSON and
have at least one path (#Paths>0) and at least one defined
schema (#DS > 0).

B. Correlation

To understand how the metrics we selected variate depend-
ing each on the other, we compute the correlation matrix
shown in Table [l We observe a high correlation between
the structural size metrics: number of paths and the number
of operations found in an API (0.96). Also, the correlation
between these two structure related metrics and the breadth is
medium high (0.52, 0.60). There is also a similar correlation
(0.58-0.63) between the structure metrics and the data model
related metrics: the number of unique defined data schemas
in an API’s specification, the number of the actual used data
schemas, and the number reused data schemas in the API.

In Figure[6| we show scatter plots visualizing the correlations
between pairs of structural and data model size metrics with
a high correlation, while in Figure [7] we show that the size in
terms of paths is not linearly correlated with the number of
clones of the API. The color of each dot on the density plot
shows how many APIs share the same pair of metric values.
To keep the color bar range in check, we have removed the
highest density values close to the origin. The scatter plot also
show a small number of large APIs with hundreds of paths
and schemas that could be subject of further study.

» 600 — T
2]
5
§ 400 .
z .
2 200 |
=
a
E 0 i
34743 APIs p=0.63
APIs
0 2,0004,0006,000
400 F _ — T
g s
g
[}
= . <,
2200 . . _—
2
2
0 N
33110 APIs p = 0.60
APIs
0 2,0004,0006,000
» 600 T .
2]
5 .
§ 400 . —— o
z : .. r
g 200 |- : |
=
A
* U \ i | L
0 20 40 60 80
Breadth
34743 APIs p=0.63

Fig. 6: Density scatter plots between #Paths and Breadth
(X axis) and data model size metrics (Y axis). Each dot
corresponds to one or more APIs having the same metric
values.

C. API Styles Segmentation

In this section, we segment the large dataset to see how the
metrics values depend on the specific group of APIs which
provide different kinds of operations their clients.

To characterize different API architectural styles we dis-
tinguish which HTTP methods are found associated with their
operations. We group all valid APIs according to the following
classes:

(1) Read-only: APIs that only allow the client to read data
with no provided operation to mutate the state of any
resource.

(2) Read/Write: APIs that allow to the clients to perform both
of the GET and POST operations on some resources.

| #Paths #Operations Breadth Depth ~OPP Methods | #DS #US #RS | UR RR ES | #Clones
#Paths L) . . ° ° °
#Operations 0.96 o . . ® ° [
Breadth 0.60 0.52 [° .
Depth 0.27 0.28 -0.02
Operations per Path 0.01 0.16 -0.05 0.04 [] . . .
HTTP Methods 0.31 0.42 0.10 0.27 0.70 . . .
#Defined Schemas 0.63 0.58 0.63 0.17 -0.00 0.15 [[}
#Used Schemas 0.60 0.58 0.51 0.16 0.02 0.17 0.78 [. .
#Reused Schemas 0.59 0.60 0.44 0.18 0.10 0.26 0.66 0.86 . .
Usage Rate -0.05 -0.03 -0.05 -0.10 0.06 0.03 -0.17 0.05 0.06
Reuse Rate 0.12 0.16 0.06 0.11 0.33 0.37 0.01 0.02 0.26 0.10
Embedded Schemas -0.05 -0.05 -0.02 -0.07 -0.07 -0.09 -0.10 -0.08 -0.11 0.24 -0.12
#Clones ‘ -0.02 -0.02 -0.02 -0.02 -0.01 -0.02 ‘ -0.01 -0.01 -0.01 -0.00

| -0.01 0.01 |

TABLE II: Metrics correlations for 31118 APIs with media_types: application/json and #Paths > 0 and #DS > 0

400 —

3)
N
o 200 #. I
H* b

07 Lb—_-.\“-"“ : .\]

0 100 200
#Paths
34743 APIs p=—0.02

Fig. 7: Scatter plot with the number of clones vs. the number
of paths in APIs with at least one clone

T T
no methods | NN 3,185 -
CRUD | = 1,593 |
RPC | M 5688 |
Read/Write | M 7,175 |
REST | . 7557 =
Read-only - S 13,877 [
| | | |
0 0.5 1 1.5
#APIs 104
T T T T
CRUD - I o |
RPC | m/——m N
Read/Write |~ D -
REST || IS o] |
Read-Only (- mo—— -
| | | |
0 2 4 6
#Methods 104

B GET [0 POST B PUT EMDELETE
Il PATCH] OPTIONS E HEAD [TRACE

Fig. 8: APIs clustered by HTTP method combination

(3) RPC: APIs that allows the client to interact with remote
resources by means of the POST operation only.

(4) CRUD: APIs that allow clients to invoke only the Create,
Read, Update and Delete operations using respectively

the POST, GET, PUT and DELETE methods.

(5) No methods: API specifications that have no HTTP
methods listed within their paths.

(6) REST: The rest of the APIs that use any of the other 68
combinations of HTTP methods.

In Figure [§| we classify the 42194 APIs with valid spec-
ification and compute the total number of methods for each
class. And, in Figure [9] we visualize how the API styles are
related to the API size by computing the total number of APIs
having a given style for each value of the #Paths (up to 10).
We see that most of the small APIs offering only one path are
Read-only or RPC-style APIs. These styles appear less in the
case of larger APIs, where the most dominant styles are the
CRUD and REST.

In Figure [T0] we show the data schema sizes for each APIs
style. The top bar chart visualizes for each style how many
used schemas are present (zero, one, or more). The bottom bar
chart shows whether schemas are defined embedded within
the operation descriptions or, as in most cases, in a separate
section of the API specification. The proportion of embedded
schemas varies between 10% (REST) and 18% (Read-Only).

V. DISCUSSION
A. How big are the API models?

According to the computed metrics, we found 17 APIs with
a number of paths that goes up to more than 100; The largest
RPC-style API provides 271 operations, all accessed using the
POST method; The API with the highest number of operations
(357) is a read/write API, with only GET and POST methods.
The largest API data model we found includes 580 distinct
schema definitions.

These are exceptionally large sizes, as 12723 APIs have only
one path and, in one case, up to 70 unique defined schemas, out
of which only 1 is actually used. Another single path API with
only one POST method describes the payload of the request
and multiple responses using 30 distinct schema types.

B. Does the API style affect the API size?

We discovered that the size of the APIs is affected by
their styles. Most of the smallest APIs (in term of number

104

1.5

B Read-Only
[JRead/Write
ORrRpPC

[JCRUD 1

ohha"'-ﬂ

#APIs

[
4 5 6 7 &8 9 10>10

#Paths

Fig. 9: Styles of the APIs depending on #Paths

Used Schemas: ll None [One Il Many

T T
REST N

No methods N
CRUD N

RPC N
Read/Write N

Read-Only |
| |
1 1.5

#Used Schemas 104
[CJEmbedded Schemas Il External Schemas

=)
o
<)

REST :é -
No methods [T -
CRUD [B
RPC [— B
Read/Write [—-——— =
Read-Only [—-————— |
0 0i2 0i4 0i6 0i8 1

#Defined Schemas 103

Fig. 10: Data Model sizes for each API style

of paths) are Read-Only and RPC styled APIs. In the case of
APIs having more than two paths, they tend to have various
combinations of HTTP methods. The CRUD and REST styles
are also the ones whose APIs overall include the highest total
number of HTTP methods.

C. What is the relationship between the functional structure
and the data structure of an API?

We have seen that there exist API descriptions that only
enumerate data model schemas without any resource paths or
operations and vice versa. For APIs including both, there is a
medium-high correlation between the size of the data model
and the number of paths and operations.

More than half of the non-empty API specifications made
full usage of the defined schemas; only very few models did
not contain any reference to the schema definitions from the
API operation descriptions. 81.1% of the 23943 APIs that are
composed of at least two paths contain also at least two defined
Schemas. The Usage Rate in these APIs reaches 76.3%. This
can be seen in Fig. [5] where we can see how in the size and
usage in API data models in function of number of paths.

D. How developers (re)use schemas within the same API?

We found that most on the APIs use references to externally
defined schemas instead of including embedded ones. This
facilitates data schemas reuse within the same APIL. Still, 25%
of the total number of APIs in our collection contains at
least one schema embedded in either the request or response
descriptions. Not all of the analysed APIs had some reuse
cases, however, we found a case where the number of distinct
reused data schemas goes up to 151.

VI. THREATS TO VALIDITY

External Validity - Sampling Bias The results of this study
have been obtained by measuring APIs specifications found
in public open source repositories. Although we have filtered
duplicates and invalid specifications, the results may not be
representatives of APIs described using other meta-models or
APIs meant for internal use only.

VII. RELATED WORK

Analysing Web APIs through their human-readable de-
scription models is a practice followed by many empirical
studies [IL1} (13} 15, 20].

OpenAPI descriptions have been analyzed for studying the
evolution of web APIs and its impacts on the clients. In [10],
we focused on observing how the size of web APIs, simply
defined in terms of the number of operations, changes during
the API evolution lifecycle. The authors of [21], use the API
model written in OAS to determine whether developers inform
their clients about deprecation during the API’s evolution.

In this work, we do not take into account the time dimension
as we only focus on the latest version of the OAS descriptions.
We also consider a larger set of metrics reflecting more details
about the structural aspect and the APIs data model. In their
work [3]], Haupt et al.| performed a structural analysis of
REST APIs, for supporting API governance tasks, on 286 API
description documents (RAML and Swagger) retrieved from
https://apis.guru, considering only metrics related to the APIs
structures: number of resources and HTTP methods, the depth
and the breadth of the API structure, which are also included
in our study. They observed that APIs do not take advantage

of the full power of REST (especially the HATEOAS con-
cept) [5]. In fact, like OpenAPI, also Swagger and RAML
provide no explicit means for describing hyperlinks between
resources and they have no support to describe the relationship
between POST requests on one resource and the resulting
creation of another one. They discovered that APIs in their
dataset are on average small with a median of 9 resources per
API. An additional observation confirmed by our larger study
is that read-only resources are very common and a subset of
APIs are completely read-only. The authors validate also their
derived metrics for the user-perceived complexity of APIs,
with a survey among API designers and developers. While
all the analyzed API descriptions in [3] are selected from a
curated repository. In our work we consider a larger set of
specifications from different public repositories on GitHub,
including the latest APIL.guru collection.

OAS API models were also study subjects for structural pat-
terns mining works. In [[17], |Serbout et al.| presented a pattern
mining approach applied on a collection of 6,919 Swagger
and OpenAPI descriptions. These are fed to a model from
which API structure trees can be built and later, fragmented
in order to detect APIs with reoccurring structures, which were
classified into pattern primitives and design smells.

Wittern et al| studied GraphQL APIs by analyzing 16
commercial GraphQL schemas and 8,399 GraphQL schemas
mined from GitHub projects. They analyzed data types and the
possible operations and proposed a characterization of naming
conventions that can help developers to adopt community
standards to improve API usability. Furthermore, they detected
that the majority of GraphQL APIs are susceptible to denial
of service attacks through complex queries [20].

VIII. CONCLUSION

In this study we analyze the functional structure and the
data model of Web APIs, a key element of microservices
and service-oriented architectures, to explore and describe a
large API collection to better understand API design practices.
We defined multiple metrics and indicators to quantify the
size of Web APIs described using the OpenAPI standard
interface description language. We computed the metrics over
a large collection of 42194 valid Web APIs mined from public
repositories on GitHub. We present descriptive statistics which
indicate that the median and mean sizes are small (e.g., 3.98
paths, 5.23 operations and 7.11 defined schemas). Still, some
APIs in the collection include up to 271 paths, 357 operations
and 580 defined schemas. The API size varies depending
on the chosen sample, as we have shown by grouping APIs
depending on the types of operations they offer. In addition to
measuring both API structures and data models, we observed
that their size is fairly correlated. Within the same API,
modelers also tend to reuse schema definitions, which are
mostly referenced from the request and response descriptions.

REFERENCES

[1] Fernando Lépez de la Mora and Sarah Nadi. An empirical
study of metric-based comparisons of software libraries. In

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
(10]

(11]

[12]

[13]

(14]
[15]

(16]

(17]

[18]
(19]

[20]

(21]

(22]

Proc. 14th International Conference on Predictive Models and
Data Analytics in Software Engineering, page 22-31, 2018.
Hamza Ed-douibi, Javier Luis Cénovas Izquierdo, and Jordi
Cabot. OpenAPItoUML: A Tool to Generate UML Models from
OpenAPI Definitions. In Proc. International Conference on Web
Engineering (ICWE), pages 487-491, 2018.

Matthias Galster and Danny Weyns. Empirical research in
software architecture: How far have we come? In Proc. WICSA,
pages 11-20, 2016.

Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-
Cortes. An analysis of restful apis offerings in the industry. In
Proc. International Conference on Service-Oriented Computing
(ICSOC), pages 589-604, 2017.

Florian Haupt, Frank Leymann, and Karolina Vukojevic-Haupt.
API governance support through the structural analysis of REST
APIs. Computer Science - Research and Development, 33(3-4):
291-303, aug 2018. 5

Stefan Karlsson, Adnan CauSevi¢, and Daniel Sundmark.
QuickREST: Property-based Test Generation of OpenAPI-
Described RESTful APIs. In Proc. ICST, pages 131-141, 2020.
Istvan Koren and Ralf Klamma. The exploitation of OpenAPI
documentation for the generation of web frontends. In Com-
panion Proc. The Web Conference, pages 781-787, 2018.
Rediana Kog¢i, Xavier Franch, Petar Jovanovic, and Alberto
Abell6. A data-driven approach to measure the usability of Web
APIs. In 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pages 64-71, 2020.
Arnaud Lauret. The Design of Web API. Manning, 2019.
Fabio Di Lauro, Souhaila Serbout, and Cesare Pautasso. To-
wards large-scale empirical assessment of Web APIs evolution.
In Proc. ICWE, May 2021.

Maria Maleshkova, Carlos Pedrinaci, and John Domingue. In-
vestigating web apis on the world wide web. In Proc. 8th IEEE
European Conference on Web Services (ECOWS), pages 107—
114, 2010.

Leonard Richardson Mike Amundsen, Sam Ruby. RESTful Web
APIs. O’Reilly, 2013.

Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. An
analysis of public rest web service apis. IEEE Transactions on
Services Computing, 14(4):957-970, 2021.

Sam Newman. Building microservices. O’Reilly, 2015.

Martin P Robillard and Robert DeLine. A field study of api
learning obstacles. Empirical Software Engineering, 16(6):703—
732, 2011.

Carlos Rodriguez et al. REST APIs: A large-scale analysis of
compliance with principles and best practices. In Proc. ICWE,
pages 21-39, 2016.

Souhaila Serbout, Cesare Pautasso, Uwe Zdun, and Olaf Zim-
mermann. From OpenAPI fragments to api pattern primitives
and design smells. In Proc. European Conference on Pattern
Languages of Programs (EuroPLoP), 2021.

The Open API Initiative. OAL https://openapis.org, 2021.
Fredy H Vera-Rivera, Carlos Gaona, and Herndn Astudillo.
Defining and measuring microservice granularity—a literature
overview. PeerJ Computer Science, 7:¢695, 2021.

Erik Wittern, Alan Cha, James C. Davis, Guillaume Baudart,
and Louis Mandel. An empirical study of GraphQL schemas.
In Proc. ICSOC, pages 3-19, 2019.

Jerin Yasmin, Yuan Tian, and Jinqiu Yang. A first look at the
deprecation of RESTful APIs: An empirical study. In 2020
IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 151-161. IEEE, 2020.

Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso,
and Daniel Liibke. Guiding architectural decision making on
quality aspects in microservice apis. In Proc. ICSOC, pages
73-89, 2018.

	Introduction
	Dataset
	Dataset preparation pipeline
	Dataset description

	Metrics
	Metrics definition
	Metrics computation Example

	Analytics Results
	Statistics
	Correlation
	API Styles Segmentation

	Discussion
	How big are the API models?
	Does the API style affect the API size?
	What is the relationship between the functional structure and the data structure of an API?
	How developers (re)use schemas within the same API?

	Threats to Validity
	Related Work
	Conclusion

