
API Rate Limit Adoption – A pattern collection

SOUHAILA SERBOUT, Software Institute, USI, Switzerland
AMINE EL MALKI, University of Vienna, Faculty of Computer Science, Software Architecture Research Group
and Doctoral School Computer Science, Austria
CESARE PAUTASSO, Software Institute, USI, Switzerland
UWE ZDUN, University of Vienna, Faculty of Computer Science, Software Architecture Research Group,
Austria
The API Rate Limit pattern controls the rate at which clients make API requests by counting the number of requests in a
specified time interval and reacting against abusive clients, in order to protect the limited resources of the API from exhaustion
and denial of service attacks. This practice helps service providers to prevent abuse and ensuring fair resource allocation,
maintain system stability, monitor and control service availability, protecting against DDoS attacks

In this research paper, we have identified patterns covering the API Rate Limit pattern adoption starting from its documen-
tation to its implementation.

Our objective is to elucidate the trade-offs associated with different identified patterns and offer guidance to developers
in making informed decisions when choosing the most suitable Rate Limit method, scope and granularity for their service.
Through providing a comprehensive overview of the Rate Limit pattern, this paper aims to enhance the understanding of how
APIs can be designed to facilitate high scalability, security, reliability, and service availability. Furthermore, we present each
pattern along with known uses observed in real-world APIs and technologies.

CCS Concepts: • Software and its engineering→ Patterns; Designing software.

Additional Key Words and Phrases: Application Programming Interfaces

ACM Reference Format:
Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun. 2023. API Rate Limit Adoption – A pattern collection. In
28th European Conference on Pattern Languages of Programs (EuroPLoP 2023), July 5–9, 2023, Irsee, Germany. ACM, New York,
NY, USA, 32 pages. https://doi.org/10.1145/3628034.3628039

1 INTRODUCTION
Many Web API design patterns and best practices have been proposed [14, 23, 24, 52, 54, 56] to improve API
quality properties [12, 15] related to performance and reliability, among others [50]. This paper focuses on the
Rate Limit pattern. Its primary goal is to avoid excessive usage of API resources by specific API clients. This avoids
overwhelming the API backend and prevents its subsequent non-availability and reduced performance [18]. It
can also improve other quality properties, such as security-related properties [13, 25, 49].
While API Rate Limit is a prevalent aspect of Web API management [16, 43], not all systems implement it

similarly. Some may not even come equipped with this feature. The absence of support for required rate-limiting
techniques in some cloud-based API management systems can create challenges for API providers in terms
of implementation and enforcement of rate limits [49]. In such scenarios, API providers may resort to manual

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
EuroPLoP 2023, July 5–9, 2023, Irsee, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0040-8/23/07. . . $15.00
https://doi.org/10.1145/3628034.3628039

1

https://doi.org/10.1145/3628034.3628039
https://doi.org/10.1145/3628034.3628039

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

Rate Limit Adoption Patterns Groups

Rate Limit Configuration

Rate Limit Configuration Metrics

Rate Limit Documentation

Rate Limit Communication

Reaction to Rate Limit Exceeded

Rate Limit Granurality

Server-Side Rate Limit Implementation

Fig. 1. Rate Limit Patterns groups Abstract Overview

implementation or utilize specialized tools to guarantee that their APIs have proper rate limits to deter excessive
usage and defend against security risks.
Furthermore, a lack of shared understanding or standardization exists when it comes to comprehending the

various options for configuring API Rate Limits [18]. This absence of common ground arises from the fact that API
providers often implement different approaches to rate limiting, resulting in variations in configuration choices
and terminology. Consequently, developers encounter difficulties in fully understanding the intricacies of API
Rate Limit settings across different APIs. Additionally, the absence of a standard also leads to inconsistencies not
only in selecting the appropriate configuration and implementation mechanism but also in the documentation of
these aspects. This presents a challenge for developers in understanding the Rate Limit policies of different APIs
and their corresponding impact on their applications, as they are often not documented in a consistent format,
as indicated by the analysis conducted in the context of this research. As a result, because of the lack of proper
understanding of the details of the Rate Limit policy, developers may inadvertently surpass the defined thresholds,
causing their client applications to fail due to measures implemented by API providers to prevent abusive
behaviors. These inconsistencies in documenting rate limits also make it difficult to conduct comprehensive
systematic studies on the various rate-limiting configurations adopted in real-world systems.
This paper introduces an analysis of the prevailing patterns used by developers to describe Rate Limit con-

figurations and strategies, as well as their known uses in real-world APIs. Furthermore, we have conducted a
comprehensive examination of the scope and the level of granularity at which Rate Limit constraints can be
enforced. Additionally, we have identified multiple implementation-related patterns and provided a compilation
of notable technological examples as a know-use of the defined pattern.

The identified patterns collection pertain to the configuration and values of Rate Limit policies, the scope and
granularity level of the enforced policies, the measures employed to counteract abusive clients, and different
patterns of Rate Limit patterns in server-side implementations (Figure 1). A patterns group refers to a sub-
collection of related patterns grouped together based on their common purposes.
The rest of this paper is organized as follows. In Section 2, we define the general Rate Limit pattern. The

following sections cover different key aspects of the Rate Limit pattern: Rate Limit configuration (Section 3),
configuration metrics (Section 4), documentation (Section 5), communication to the users (Section 6), granularity
(Section 7), providers reaction to block or mitigate abusive behaviours (Section 8), and implementation (Section 9).

We outline the methodology to define patterns in Section 10. And, we review related work on Web API patterns
and rate limits for Web APIs in Section 11.

2

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

2 RATE LIMIT PATTERN AND ITS RELATED ADOPTION PATTERNS
In this section, we provide a shortened version of the Rate Limit pattern, which is the main background of our
work. For the complete pattern text, please refer to the Patterns for API Design book [56, p. 411]. The pattern
variants documented in the rest of this paper use by default the Context, Problem, Forces sections reported here.

Rate Limit Adoption Patterns

Rate Limit Configuration XOR

Static Rate Limit

Dynamic Rate Limit

Rate Limit Metrics OR

Request-based Rate Limit

Time-based Rate Limit

Point-based Rate Limit

Rate Limit Documentation OR

Natural Language Documentation

Machine Readable Documentation

Rate Limit Communication OR

Usage of Counter Headers

Usage of Reporting Endpoints

Reaction to Rate Limit Exceeded XOR

Abuse Behaviour Termination OR

IP Address Blocking

User Account Blocking

API Key Blocking

Abuse Behaviour Mitigation OR

Requests Throttling

Requests Queuing and Retry

Rate Limiting with Backoff

Rate Limit Granurality Levels OR

Client Level Rate Limiting OR

Rate limit at the Level of Client IP
Address

Rate limit at the Level of User Account

Rate limit at the Level of API Key

Resource Level Rate Limiting OR

Rate limit at API Level

Rate limit at Endpoint Level

Rate limit at Operation Level

Rate limit at Service Provider

Server-Side Rate Limit Implementation OR

Rate Limiter Positioning XOR

Internal Rate Limiting

External Rate Limiting

Rate Limiter Scope OR

Global Rate Limiting

Local Rate Limiting

Fig. 2. Rate Limit Pattern Variants’ Map: Patterns group| Patterns sub-group | Pattern

3

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

Rate Limit Pattern

Context: An API contract has been established with clients. An API Description specifying message exchange
patterns and protocols has been defined. The API may also be offered without any contractual relationship.
Problem: How can the API provider prevent excessive usage by clients that may harm the provider’s operations
or other clients?
Forces: There are several forces to consider when implementing a Rate Limit. These include the economic
aspects, such as the cost of implementing and maintaining prevention measures and the potentially negative
reactions from clients [20]. Performance is a factor, as the service provider may want or be required to maintain
high-quality service for all clients. Reliability is important, as actions must be taken to prevent API abuse from
harming other clients. The impact and severity of the risks of API abusemust also be analyzed and weighed against
the costs of prevention measures. Additionally, client awareness is important, as responsible clients need to be
aware of their usage allowances to avoid being locked out of the API. Furthermore, API Rate Limiting plays a
critical role in ensuring the security of an API system. It helps to protect against various types of attacks, including
denial-of-service (DoS) attacks, which occur when an attacker sends a high volume of requests to an API in a
short period, causing the API system to become overwhelmed and unavailable.
Solution: Implement a Rate Limit to prevent API clients from excessive usage.

Set the limit as a certain number of requests allowed per period. If the limit is exceeded, further requests can be
declined, processed later, or served with best-effort guarantees using reduced resources. Customize the scope and
period of the Rate Limit. Use tracking mechanisms such as tokens or monitoring tools to enforce the Rate Limit.
Related Patterns: The Rate Limit pattern may be included in a Service Level Agreement [56], and the details of
the Rate Limit may be tied to the client’s subscription level as described in the Pricing Plan pattern [56]. In this
case, the Rate Limit is used to enforce different billing levels of the Pricing Plan. Clients subject to a Rate Limit
may be identified by their API Key [56].
In Figure 2, we summarize the Rate Limit adoption patterns we identified in the scope of this paper,

grouping them into collections depending on their purposes. In the patterns map, we employ logical operators
to emphasize the cases where certain pattern can be effectively co-adopted OR , instances where their combination
is incompatible XOR , and situations where it is advisable to adopt all variants as a standard practice AND .

3 RATE LIMIT CONFIGURATION
An API Rate Limit is the maximum number of requests an API can receive from a specific client during a defined
time frame. The time window can be measured in minutes, hours, days, or months. The Rate Limit configuration
values can be static: the same value independently of the API usage, or dynamic: the value adapts to the client’s
behaviors and current system capacities (Figure 3).

Rate Limit Configuration XOR

Static Rate Limit

Dynamic Rate Limit

Fig. 3. Rate Limit Configuration Patterns

4

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

Pattern 1: Static Rate Limits Configuration

Context: API provider needs to set a predefined configuration of rate limits to prevent abusive consumption.
Problem: How can the API provider prevent excessive usage by clients that may harm the provider’s operations
or other clients, without the need for complex differentiation based on consumer behavior or characteristics?
Solution: Static rate limits are set by the API provider and remain constant regardless of the number of requests
made.
Solution details:

Predefined limits will be set in advance and do not change based on the current load or traffic on the network.
Defining a static Rate Limit can be challenging, as it depends on various factors such as the service capacity, the
expected demand, the request size and complexity, and the service level objectives (SLOs) [40]. One possible
method to define a static Rate Limit is to use Little’s Law [34] from queuing theory, which states that the average
number of requests in a system (𝐿) is equal to the average arrival rate (𝜆) multiplied by the average response
time (𝑊). Therefore, 𝐿 = 𝜆𝑊 . By rearranging this equation, we can obtain 𝜆 = 𝐿

𝑊
, which means that the arrival

rate should not exceed the ratio of the system capacity to the response time. This can be used as a guideline to
infer a static Rate Limit value for a service. However, this method assumes that the arrival rate and the response
time are known, constant, and independent, which may not be true in reality. Therefore, it is advisable to monitor
the service performance and adjust the Rate Limit accordingly if needed [8, 21].
Consequences:

+ Simplicity: Static rate limits are easy to implement and understand, as the limit is a fixed value.
+ Economic Aspects: A static Rate Limit is cheap to implement and maintain.
+ Performance: A static Rate Limit implementation has a minimum performance overhead on the server side.
+ Client Awareness: Clients can easily be informed and understand static rate limits.
+ Predictability: The limit will not change, so clients relying on the Rate Limit know exactly what to expect.
- Economic Aspects: A static Rate Limit can not be customized in a fine-grained manner, e.g., per customer, or
adjusted to specific situations. This can have economic consequences as some clients can perceive the Rate
Limit as too restrictive.

- Inflexibility: Static rate limits may not be able to adapt to changing traffic conditions and may cause issues
if the limit is set too low or too high.

- Client Performance and Reliability: The client can be negatively influenced by too restrictive rate limits. As
static limits cannot be adapted to circumstances, they can have a negative impact on client performance
and reliability.

- Unfairness: The Rate Limit may be too restrictive for some clients and too lenient for others.

Pattern 2: Dynamic Rate Limits Configuration

Context: The demand for resources and the behavior of consumers can vary dynamically, requiring adaptive
rate limiting strategies.
Problem: How can an API provider or system dynamically adjust and configure rate limits for incoming requests
to effectively manage resource allocation, prevent overload, and adapt to changing traffic patterns?
Solution: A dynamic Rate Limit is a type of Rate Limit that changes based on conditions such as traffic or system
load.
Solution details: Unlike static rate limits, which are predetermined and remain constant, dynamic rate limits
are designed to be adjustable in real-time. This allows the system to respond dynamically to changes in demand,
ensuring that the Rate Limit prevents resource overuse or abuse.

5

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

This approach is based on monitoring the API latency, which is the time taken to process a request [15]. A
sliding window of time is used to calculate the average latency of the service, which is then compared to a target
latency representing the desired level of performance.
Suppose the average latency exceeds the target latency. In that case, the Rate Limit is reduced by a specific

factor, while if the average latency is below the target latency, the Rate Limit is increased by a specific factor.
This allows the Rate Limit to adapt to the changing conditions of the service and maintain a reasonable quality of
service [38]. This technique is inspired by feedback control theory [22] and has been applied in various domains
such as web servers, cloud computing, and network traffic management.
Consequences:

+ Adaptability: Dynamic rate limits can adjust to changing conditions and prevent system overload.
+ Economic Aspects: A dynamic Rate Limit can be customized in a fine-grained manner, e.g., per customer, or
adjusted to specific situations. This can have economic benefits, as the rate limits can be adjusted according
to economic circumstances.

+ Fairness: Dynamic rate limits can ensure that resources are shared fairly among users and systems based
on their current usage.

+ Client Performance and Reliability: Due to adaptability, the dynamic Rate Limit has the potential to help
achieve good client performance and reliability.

- Uncertainty: Clients relying on the Rate Limit may not know what to expect, as the limit may change based
on conditions.

- Complexity: Implementing dynamic rate limits can be more complex and require more resources, as the
system must continuously monitor and adjust the limits.

- Economic Aspects: Due to the higher complexity, a dynamic Rate Limit can require more effort to be
implemented and maintained.

- Performance: A dynamic Rate Limit implementation has a higher performance overhead on the server side
than static variants.

4 RATE LIMIT CONFIGURATION METRICS
The configuration of the Rate Limit value is set based on a specific metric. Based on our analysis, we identified
three configuration metrics-related variants: Request-based, Time-based, and Point-based (Figure 4).

Rate Limit Metrics OR

Request-based Rate Limit

Time-based Rate Limit

Point-based Rate Limit

Fig. 4. Rate Limit Metrics Patterns

Pattern 3: Request-based Rate Limit configuration

Problem: How to effectively control the frequency of API requests made by a client within a specific timeframe?
Solution: Use a request-based rate-limiting strategy to limit the frequency of API requests made by specific
clients.

6

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

Solution details: A Request-based Rate Limit can be implemented by using a rate limiter library or tool (such
as: express-rate-limit1 or koa-ratelimit2), that allows to divide time into smaller windows (e.g: second, minute,
or hour) and restrict the number of requests that can be made within those windows based on capacity and
projected traffic. The rate limiter would keep track of the number of requests made by each API consumer and
restrict the requests once the limit is reached. The implementation should consider adopting a specific solution
for when a client reaches the limit (see Section 8).
Consequences:

+ Predictability: Clients can more easily predict their API usage and adjust their behavior accordingly.
+ Implementation Simplicity: A request-based system can be more efficient than other types of rate limiting,
as it does not require tracking the time taken by each request.

Pattern 4: Time-based Rate Limit configuration

Context: API or service provider is able to estimate the time it takes to process a particular type of request or
operation.
Problem: How to prevent clients from sending too many highly-resource-consuming concurrent requests
within a given short time window?
Solution: Estimate the processing times for different types of requests or operations, and set a time limit that a
client is allowed to consume withing a specific time frame. e.g, every five minutes a client can only send a total
number of requests that will need one minute of processing time.
Solution details: Fix a time window duration window and restrict the number of concurrent requests that can
be made within those windows based on capacity, projected traffic and the estimated time taken by each of the
requests sent during the same window.

In the extreme case, only one request can be processed from each client at a time window. Additional requests
sent by the same client are rejected as long as the server is busy with the previous one. If the client request hangs
or simply lasts beyond the time window duration, it can be aborted and an error is returned to the client.
Frappe framework API can be adopted to implement the time-based rate limiting pattern. The framework

implements fixed window rate-limiting based on time consumed by requests. The Rate Limit can be enabled
by setting in the configuration file:“site_config.json" the values of the attributes limit and window in
seconds. Where “limit" is the maximum that requests sent during a time window “window". e.g, In the following
configuration example, sum of the time taken by all the HTTP requests coming from a specific client to 600s
withing each 3600s time window.

{
" r a t e _ l i m i t " : {

" l i m i t " : 6 00 ,
" window " : 3600

}
}

Consequences:
+ Scalability: By limiting the number of requests that can be made within a specific time window, the API
can handle a larger number of requests and reduce the load on the backend servers.

1https://github.com/express-rate-limit/express-rate-limit
2https://github.com/koajs/ratelimit

7

https://frappeframework.com/docs/user/en/rate-limiting

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

+ Predictable resource usage: Since each request takes a fixed maximum amount of time, the server can more
easily predict and control the maximum resource usage.

+ Performance: By limiting the time taken by each request, the server can ensure that requests do not
monopolize resources and cause slowdowns for other clients.

- Usability: Certain types of requests may require more time to complete and may not be possible under a
time-based rate limit.

- Unpredictability/User Satisfaction: Clients may be unable to predict the duration of their requests and may
be disappointed if their requests are forced to stop when they take longer than the maximum amount of
time allowed.

- Implementation complexity: Implementing time-based rate limiting can be more complex than other rate-
limiting approaches since it requires tracking (on the server) and estimating (on the client) the time taken
by each request.

Known uses: This approach was not too common among the selected APIs we studied. The only API that
adopted it among Shopify APIs is the Shopify Storefront API, which limits the Rate Limit value to sending
requests that take up to 60 seconds per IP address.

Pattern 5: Points-based Rate Limit configuration

Problem: How to efficiently manage resource allocation and prevent API overload when clients access multiple
resources with a single request?
Solution: Assign to each request a specific point value based on its complexity and resources required, and
restrict the total number of points that can be used within a certain period.
Solution details: Computing the maximum and minimum possible query complexity is necessary to estimate
the overall cost (number of calls) of the possible queries, thus deciding the GraphQL API Rate Limit values using
a points-based system that dynamically computes the query cost and the Rate Limit status.

𝑞𝑢𝑒𝑟𝑦_𝑠𝑐𝑜𝑟𝑒 =𝑚𝑖𝑛(𝑜𝑣𝑒𝑟𝑎𝑙_𝑙𝑖𝑚𝑖𝑡,𝑚𝑎𝑥 (1, 𝑞𝑢𝑒𝑟𝑦_𝑐𝑜𝑠𝑡
𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑤𝑒𝑖𝑔ℎ𝑡

))

APIs are a known example of where the Rate Limit is often points-based. Since in graphQL, a query can operate
on several resources, when deciding the Rate Limit value, the complexity of all the queries that the API can
handle should be taken into account. This differs from the other APIs, where every request invokes an endpoint
that targets one specific resource.

A widely known example is the GitHub GraphQL API3. The API dynamically computes a rate limit score based
on query complexity. The limit score of all the queries made in an hour should not exceed 5000 points/token
(𝑡𝑜𝑘𝑒𝑛_𝑙𝑖𝑚𝑖𝑡 = 5000𝑝𝑜𝑖𝑛𝑡𝑠/ℎ):

𝑔𝑖𝑡ℎ𝑢𝑏_𝑞𝑢𝑒𝑟𝑦_𝑠𝑐𝑜𝑟𝑒 =𝑚𝑖𝑛(𝑡𝑜𝑘𝑒𝑛_𝑙𝑖𝑚𝑖𝑡,𝑚𝑎𝑥 (1, 𝑞𝑢𝑒𝑟𝑦_𝑐𝑜𝑠𝑡
𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑤𝑒𝑖𝑔ℎ𝑡

))

Where the 𝑡𝑜𝑘𝑒𝑛_𝑙𝑖𝑚𝑖𝑡 is the specific Rate Limit per used token (default value: 5000 requests/h).
The 𝑞𝑢𝑒𝑟𝑦_𝑐𝑜𝑠𝑡 in the case of the GitHub API is computed based on the relative computational cost of resolving

each field in the schema, which is, in other words, the number of calls needed to fulfill the query. Note that an
individual query cannot exceed 500k nodes. Also, the minimum cost of a query is equal to 1, in the case of queries
with depth equal to 1. By default, all fields in the GitHub GraphQL API have the same complexity weight, which
is 1.

3https://docs.github.com/en/graphql/overview/resource-limitations

8

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

With the GraphQL API, it is possible to check the Rate Limit status by querying fields on the rateLimit object.
It also allows computing query scores before running a call.
Consequences:

+ Customizability: The point values can be customized to reflect the relative importance of different API
operations or queries or the availability of different server resources.

+ Fairness: A points-based system can be more fair and flexible than other types of rate limiting, as it allows
clients to make more requests for simpler operations and fewer requests for more complex ones.

- Implementation complexity: Implementing a points-based system can be more complex than other types of
rate limiting, as it requires tracking the point values of each API operation or query.

- Complexity: Service providers should provide their clients with a dynamic/static solution to accurately
compute the server’s query execution cost to enable them to adapt to Rate Limit restrictions. While a
dynamic cost computation can be more accurate, it can induce additional runtime costs. A static approach
would not cause additional engineering costs but can only help the clients estimate an upper-bound query
cost.

5 RATE LIMIT DOCUMENTATION PATTERNS
Rate Limit documentation patterns aim to provide guidelines for documenting API Rate Limit policies and
guidelines making the documentation more accessible and easier to understand for developers. We identified two
documentation patterns:

Rate Limit Documentation OR

Natural Language Documentation

Machine Readable Documentation

Fig. 5. Rate Limit Documentation Patterns

Pattern 6: Natural Language Documentation

Context: API provider has implemented a clear Rate Limit approach
Problem: How to express the Rate Limit configuration in case of static rate limit? How to notify all kinds of
clients about the Rate Limit information?
Forces:

• Developer Understanding: Properly documented rate limits enable developers to understand and work
within the imposed limits, optimizing their API usage and minimizing disruptions.

• Efficient API Integration: By providing Rate Limit documentation in natural language, API users with
different levels of knowledge can grasp the concepts and guidelines, facilitating efficient integration and
optimization of API usage within the defined limits.

Solution: Use natural language to describe the Rate Limit strategy.
Solution details: The information regarding rate limits can be incorporated into the natural language description
of the API, such as its web page. Given the potential for misinterpretation in natural language, the presentation
of this information must be clear, concise, and easily understandable. This should include a clear outline of the
specific details of the rate limit, including the number of permissible requests per unit of time (such as per minute
or day), the response that will be returned when the limit is exceeded (such as HTTP 429 "Too Many Requests"),

9

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

and the period after which the limit will reset. It is also important to inform clients of any potential consequences
that may arise if the limit is reached, to improve the transparency of the API and increase trust among API users.
Consequences:

+ Flexibility: The ability for providers to describe their rate-limiting strategy in detail offers flexibility in
tailoring the approach to the needs of their API representation.

+/- Human Readability and understandability: Natural language presents a high level of human readability
and understandability, as it presents the information in a clear and accessible manner. However, it may
require more time to grasp the information as the developer needs to go through the entire text unless it is
structured in a manner that facilitates quick comprehension.

- Machine Readability: NL is not ideal for machine readability, as the information may not be presented in a
structured or standardized format that automated systems can easily process.

- Not standardized: The lack of standardization in the use of natural language to describe rate limits across
different API providers can lead to confusion and difficulties for developers, as each provider may use
different terminology, conventions, or methods for communicating their Rate Limit strategy, making it
challenging to compare and understand the restrictions imposed by different APIs.

Known uses: The default Rate Limit for eBay APIs is presented in a well-structured table, which enhances the
ease of information comprehension. The Rate Limit metric used by eBay is consistent across all APIs, measured
in terms of the number of calls per hour [4]. This provides clear and straightforward information for developers
to understand and adhere to the rate limit. In contrast, GitHub APIs use purely natural language to describe
their rate-limiting strategy, making it more challenging for developers to determine the Rate Limit value. The
information is dispersed throughout the content and requires a thorough reading of multiple paragraphs to grasp
the rate-limiting approach fully.
This is also observed for Meta APIs, where rate-limit strategies are described entirely in natural language,

highlighting the diversity of rate-limiting strategies used. The lack of a comprehensive metamodel for describing
rate-limiting strategies across different APIs highlights the need for a unified approach to this aspect of API
development.

Pattern 7: Machine Readable Documentation

Context: API uses a static Rate Limit configuration.
Problem: How to automate the accessibility to Rate Limit information?
Solution: Use structured, machine-readable language to detail the Rate Limit strategy fully.
Solution details: Since the static Rate Limit values remain constant, they can be conveniently included in
machine-readable API descriptions. Providing Rate Limit information in machine-readable documentation allows
developers to use tools which can read the limitations of the API, assuming the metadata is represented following
agreed upon conventions or standards. It also provides developers with a systematic approach to compare the
limitations of various APIs that serve similar purposes and plan their integration accordingly. This enables them
to make informed decisions and select the API that best meets their specific requirements. This increased level of
transparency and comparability can significantly aid developers in their API integration and usage decisions,
leading to a more positive experience. Machine-readable Rate Limit descriptions can also serve to automatically
generate human-readable descriptions in natural language.
Consequences:

+ Machine readability: The ability to automatically parse and reuse the Rate Limit policy, assuming an
agreed-upon metadata representation is followed.

10

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

- Human readability: It might be difficult to read in case Rate Limit metadata is encoded with complex
structured languages such as XML.

Known uses: Analyzing 248,566 OpenAPI descriptions revealed that only 4,179 contained keywords related to
rate limits. This low number indicates a weak adoption of structured expression formats for statically documenting
and communicating information about rate limits. It highlights the tendency of developers to focus primarily on
functional aspects of APIs, neglecting to provide detailed information about the limitations imposed on usage.
Even API gateway cloud providers, such as AWS and Azure, which offer the ability to import API endpoint

details, including resources, methods, responses, and descriptions, as well as the mapping between API operations
and backend functions, through the use of OpenAPI Specification (OAS) descriptions [2, 3], lack the capability
to import and export Rate Limit and usage plan configurations in a machine-readable format. These settings
can only be configured through the dedicated web-based user interface, limiting the level of automation and
programmatic control that can be exercised over these critical aspects of API management.

6 API RATE LIMIT COMMUNICATION
Developers integrating with these APIs require accurate and up-to-date communicated information about the
rate limits to optimize their API usage and avoid Rate Limit violations. Without a centralized mechanism to
retrieve Rate Limit details, developers may struggle to obtain the necessary information, leading to inefficient
integration and potential disruptions.

We identified two patters related the how API providers can communicate current up-to-date Rate Limit state
to their clients: Usage of couter headers, and usage of an endpoint to report Rate Limit state.

Rate Limit Communication OR

Usage of Counter Headers

Usage of Reporting Endpoints

Fig. 6. Rate Limit Documentation Patterns

Pattern 8: Usage of Counter Headers

Context: Clients invoke an API with dynamic rate limiting configuration.
Problem: How to dynamically provide clients with important information about the limits and constraints of
the API?
Forces:

• Transparency and accurate Usage Monitoring: Real-time feedback on Rate Limit consumption allows
developers to accurately track their API usage, enabling them to make informed decisions and adjustments
to stay within the defined limits.

Solution: Include Rate Limit information in the response header of Web API calls.
Solution details: The headers such as X-Rate-Limit-Limit and X-Rate-Limit-Remaining can be used to
notify the clients about the dynamic Rate Limit value. The X-Rate-Limit-Limit header shows the total allowed
number of requests in the current time window, and the X-Rate-Limit-Remaining header shows the remaining
number of requests that can be made before reaching the limit. Customized headers can also be used.

11

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

Known uses: Analyzing the response headers schemas included in the OpenAPI descriptions, we detected
a total of 316 APIs that dynamically convey information about the API, endpoint, or provider limits through
dynamic response headers in the response.
Widely used GitHub REST API appends counters in the responses headers of all the query operations, e.g.:

> x− r a t e l i m i t − l i m i t : 60
> x− r a t e l i m i t − rema in ing : 56
> x− r a t e l i m i t −used : 4
> x− r a t e l i m i t − r e s e t : 1372700873

In the case of Shopify, all their REST APIs use a specific header field to report how many requests the client
has made over the total number of allowed requests per minute. If the limit is exceeded, a Retry-After header is
sent with the number of seconds to wait until retrying the query.

> X−Shopi fy −Shop−Api−Ca l l − L im i t : 3 2 / 4 0
Consequences:

+ Performance: Clients can receive immediate feedback on their usage of the API and can adjust their requests
accordingly, reducing the number of unnecessary requests and improving overall API performance.

+ Reliability: By receiving early notifications of rate limits, clients can avoid being completely blocked from
accessing the API and can plan their usage accordingly, ensuring reliable access to API resources.

- Usability: Client developers may find it difficult to understand the meaning of the Rate Limit headers,
leading to confusion and frustration. Additionally, some clients may not handle Rate Limit headers properly,
resulting in unexpected errors.

- Maintainability: Rate Limit headers can add complexity to API documentation and implementation, requir-
ing additional maintenance effort to ensure accurate and consistent usage.

Related Patterns:
• Rate Limit documentation patterns: Complement this pattern by providing comprehensive documentation
that covers the meaning of all the Rate Limit related headers appended to the response headers.

Pattern 9: Usage of Reporting Endpoints

Context: Clients are not about to invoke an API with a dynamic rate limiting configuration, but nevertheless
they would want to discover if their previous usage lies within the limits.
Problem: How can API providers ensure that developers have easy access to accurate and up-to-date Rate Limit
details for effective integration and management of their API usage?
Solution: Add an endpoint that the clients can use to explicitly retrieve API Rate Limit details.
Solution details: The dynamic Rate Limit value can be retrieved through one of the API’s endpoints, such as a
dedicated endpoint for checking the current Rate Limit status. This endpoint can return information such as the
current rate limit, the time window for the rate limit, and the number of requests remaining. This information
can be returned in the response body in a structured format, such as JSON or XML, and can be accessed by the
client through a GET or POST request. Notifying the Rate Limit value provides a programmatic way for clients to
check the Rate Limit status and can be helpful for automation and monitoring. This way, client applications can
check the Rate Limit status before making requests to the API and take appropriate actions like waiting, caching,
or prioritizing requests based on the Rate Limit status.
Note that these endpoints for retrieving API Rate Limits can be rate-limited themselves.

Consequences:

12

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

+ Transparency: By providing transparent and up-to-date Rate Limit information, API providers can enhance
the overall developer experience and foster a collaborative relationship with developers.

+ Performance : Including counter headers enables developers to monitor their Rate Limit consumption
in real-time, empowering them to make informed decisions about their API usage and avoid Rate Limit
violations.

- Maintainability:
- Security: If the Rate Limit endpoint is not secured properly, it can become a target for abuse and exploitation,
leading to security vulnerabilities.

Known uses: Widely known web APIs have endpoints for Rate Limit information:

• GitHub API: The GitHub API allows developers to interact with GitHub’s platform and services. It has a
Rate Limit endpoint at https://api.github.com/rate_limit that returns the current Rate Limit status for the
authenticated user or the IP address.

• Spotify API: The Spotify API allows developers to access and control Spotify’s music streaming service. It
has a Rate Limit endpoint at https://api.spotify.com/v1/rate-limit-status that returns the current Rate Limit
status for the authenticated user.

• OpenWeather API: The OpenWeather API provides weather data and forecasts for various locations. It has a
Rate Limit endpoint at https://api.openweathermap.org/data/3.0/rate-limit-status?appid=CLIENT_API_KEY
that returns the current Rate Limit status for the specified app ID.

7 RATE LIMIT GRANULARITY
When establishing a Rate Limit for an API, various levels of granularity can be utilized to regulate the frequency at
which requests are made. The degree of granularity selected establishes the precision of the Rate Limit application
and aids in ensuring that the API is utilized efficiently and responsibly. This section categorizes the pattern
variants related to granularity levels according to their scope into client and resource groups. The distinction is
based on whether the Rate Limit restriction is enforced to restrict a specific client or a specific resource.

Rate Limit Granurality OR

Client Level OR

Rate limit at the Level of Client IP Address

Rate limit at the Level of User Account

Rate limit at the Level of API Key

Resource Level OR

Rate limit at API Level

Rate limit at Endpoint Level

Rate limit at Operation Level

Rate limit at Service Provider

Fig. 7. Rate Limit Granularity Patterns

13

https://api.github.com/rate_limit
https://api.spotify.com/v1/rate-limit-status
https://api.openweathermap.org/data/3.0/rate-limit-status?appid=CLIENT_API_KEY

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

7.1 Client

Pattern 10: Rate Limit Value at the Level of User Account
Context: The source of client requests can be distinguished by authenticating the sender user account.
Problem:How to control the usage of the API by individual users, especially if some users are making significantly
more requests than others?
Solution: Set customized quotas for each user or group of users.
This level of API Rate Limiting is appropriate when an application requires different rate limits for different

users. It can be used when user accounts are attached to different usage plans.
Consequences:

+ Flexibility: When a Rate Limit is defined on the user accounts level, API can also provide customized usage
quotas or limits based on each user’s specific needs or usage patterns.

- Unfairness: In the case of a static Rate Limit value, some users might not need all the resources allocated to
them.

Pattern 11: Rate Limit Value per IP Addresses

Context: API provider or service needs to control and restrict the rate at which incoming requests are made
from individual IP addresses
Problem: How to prevent abusive usage from single IP addresses?
Solution: Limit the number of requests that can be made from a single IP address in a given period.
Solution details: This pattern can be implemented for instance using the basic configuration of NGINX. Inside
the Nginx configuration, define a limit zone, which is typically defined in the http block. A limit zone specifies
the key for rate limiting, the maximum burst, and the rate limit. e.g,.:

h t t p {
l im i t _ r e q _ z on e $b ina ry_ remote_add r zone= r a t e _ l im i t _ z o n e : 1 0m r a t e =10 r / s ;

}
• $binary_remote_addris he key for rate limiting based on the client’s IP address.
• zone=rate_limit_zone is he name of the zone. 10m: The memory allocated for the zone.
• rate=10r/s is the rate limit, in this example, allows 10 requests per second. Adjust this value as needed.

Consequences:
+ Authentication-free: This strategy does not require any client authentication.
- Unfairness: Legitimate users sharing the same IP address might be affected by intended limitations.
- Efficiency: Adopting a rate-limiting strategy based only on the IP addresses is inefficient because an abusive
user can still use the API from multiple IP addresses.

Pattern 12: Rate Limit Value per API Key

Context: Every client can obtain a specific unique key using a tokens generator offered by the API provider.
Problem: How to control the usage of the API by a specific client?
Solution: Distinguish between the clients based on API Keys, and set a Rate Limit taking it into account.
Consequences:

+ Revocation: API keys can be revoked in case of abuse.

14

https://www.nginx.com/blog/rate-limiting-nginx/

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

- Coarse-grained: Unable to distinguish requests from different users of the same client application.
- Security: keys may be leaked into access logs and are susceptible to theft or unauthorized use if not properly
secured.

Known uses:
This is the most common level of API Rate Limiting, where all requests from an application identified by its API

key are subject to the same rate limit. This level is appropriate when an application does not require user-specific
rate limits or when it is difficult to identify individual users (such as with anonymous or public applications). In
the case of Github API, this rate-limiting approach is combined with rate-limiting based on the IP Address.

7.2 Resource Granularity

Pattern 13: Rate Limit Value for Service Providers
Context: A provider manages several services consumed by multiple clients. One client might need to combine
multiple services for the same provider.
Problem: As a provider, how can all the services under my ecosystem adhere to a consistent set of usage
guidelines?
Solution: All the APIs of a given provider use the same rate-limiting configuration.
Consequences:

+ Simplicity: Simplified billing or uniform pricing models encourage users to try and use one or more services
offered by the same provider.

+ Usability: Consistent user experience across all APIs and services of the provider.
- Performance: Users might need to access some services more than others.

Known uses:

• NASA Open APIs. According to the NASA Open APIs documentation on rate limiting, all APIs have the
same default Rate Limit of 1000 requests per hour per IP address [6]. However, they recommend obtaining
a developer API key if you will be intensively using the APIs to support a mobile application or will be
making more than a few dozen requests per hour. This key will allow for higher rate limits that are specific
to the API key. Therefore, when using a developer API key, the rate limits will be different from the default
Rate Limit for all APIs.

Pattern 14: Rate Limit at the API Level
Context: All API features have uniform costs, and there are no predictable hotspots as clients invoke them with
uniform probability.
Problem: How to control the usage of an entire API, independently of which features are being used?
Solution: Track usage of API features globally and set limits on the entire API, giving the same weight to each
request, no matter which API feature it invokes.
Consequences:

+ Maintainability: Using the same Rate Limit simplifies the management and configuration of rate limiting
rules, making it easier to maintain and update the API’s rate limiting system as a whole.

+ API monetization strategy: Having the same Rate Limit on all the API operations makes easier to set a
pricing plan that can be not confusing for clients and easier to track.

15

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

- Scalability: Different endpoints or functionalities within an API may have varying resource requirements.
Applying a uniform Rate Limit may hinder the ability to scale certain critical endpoints independently,
potentially leading to performance bottlenecks and inefficient resource allocation.

Known uses: Both the Search API and Files API of Stripe allow up to 20 operations per second. It should be
noted that this Rate Limit applies to both reading and writing operations without distinguishing between the
two. However, the rate limiter for writing operations is separate from the rate limiter for reading operations [11].

Pattern 15: Rate Limit at Endpoint or Operation Level

Context: Some API endpoints may be more susceptible to abuse than others. For example, certain endpoints are
particularly resource-intensive, such as those that involve complex calculations or database queries.
Problem: How to control the usage of specific features of the API, especially if some features are being used
significantly more than others?
Solution: Track usage of specific API endpoints or operations and set limits according to their specific costs.
Consequences:

+ Precision: Endpoint-level rate limiting can be used to ensure that critical endpoints are not overloaded
with requests, which can negatively impact the performance and availability of the entire API.

- Understandability: Clients need to be clearly informed about which limits are applied to which endpoints.

Known uses: Google Analytics Reporting and Configuration web APIs have different default limits depending
on if the endpoints is a writing or reading endpoint. Google also allows users to request additional quotas per
each project, for each of the read and the write requests separately4.

Pattern 16: Rate Limit at Resource Level
Context: Some specific resources may be more susceptible to abuse than others.
Problem: How to control the usage of specific operations accessing a specific resource?
Solution: Track the endpoints accessing the same resource and set limits according to their specific costs.
Consequences:

+ Efficient resource utilization: Resource-based rate limiting ensures that a specific resource is not over-
whelmed by requests and helps to optimize its usage.

- Scalability: If the API is experiencing high traffic, it may be challenging to scale the Rate Limit effectively,
as different resources may have varying usage patterns and requirements.

Known uses:

• In Ebay’s Post-Order API, the endpoints accessing each resource have their own Rate Limit which is set to
5000 API calls per day separately for each of: Cancellation, Case Management, Inquiry, and Return [4].

• Ebay’s Fulfillment API combines both limits per operation and per resource. For instance, the getPayment-
Dispute and getPaymentDisputeSummaries methods have a Rate Limit that is separately set to 250,000 API
calls per day, while all the methods accessing the Order resource have a shared Rate Limit set to 100,000
API calls per day [4].

4https://developers.google.com/analytics/

16

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

8 PROVIDER REACTION TO RATE LIMIT EXCEEDING

Reaction to Rate Limit Exceeded XOR

Abuse Behaviour Termination OR

IP Address Blocking

User Account Blocking

API Key Blocking

Abuse Behaviour Mitigation OR

Requests Throttling

Requests Queuing and Retry

Rate Limiting with Backoff

Fig. 8. Providers Reaction to Rate Limit Exceeding Patterns

In some cases, even after being temporarily blocked due to exceeding the API Rate Limit, certain clients may
persist in attempting to make requests above the set limit. This can cause strain on the API and negatively impact
its performance. It may be necessary to implement additional measures to prevent such clients from bypassing
the rate limit, such as IP address blacklisting or more sophisticated anti-bot or denial of service prevention
mechanisms [25]. We identified a set of Rate Limit adoption patterns related to the providers’ reaction to some
clients’ abusive behaviors. We classified them into two categories, depending on if the goal of the provider is to
prevent the abusive clients from consuming the API or to mitigate their behavior.

8.1 Abusive behavior Termination

Pattern 17: IP Address Blocking

Context: Clients are identified by their IP Address.
Problem: How to effectively terminate abusive behaviors from clients identified by their IP address?
Solution: If an identified client exceeds a predefined limit on the number of requests they can make, further
requests from that client should be blocked
Consequences:

+ Simplicity: simple to implement.
- Unfairness: Legitimate users may be mistakenly blocked if the IP address is flagged for abusive behavior.

Known uses: When exceeded the limits, GitHub blocks IP addresses of non authenticated clients. The snet
response has a 403 code with a x-xss-protection header that informs the clients that they are being blocked.

17

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

' x− r a t e l i m i t − l im i t ' : ' 6 0 ' ,
' x− r a t e l i m i t − remaining ' : ' 0 ' ,
' x− r a t e l i m i t − r e s e t ' : ' 1 6 8 9 0 0 4 3 3 5 ' ,
' x− r a t e l i m i t − r e sou r ce ' : ' core ' ,
' x− r a t e l i m i t −used ' : ' 6 0 ' ,
' x−xss − p r o t e c t i o n ' : ' 1 ; mode=block '

The response also includes a message to inform clients that the Rate Limit value is higher in for authenticated
requests: “RequestError [HttpError]: API Rate Limit exceeded for <IP-ADDRESS>. (But here’s the
good news: Authenticated requests get a higher rate limit. Check out the documentation for
more details.)"

Pattern 18: User Account Blocking

Context: Systems where clients are primarily identified by their user accounts. In such systems, each client
typically has a unique user account, which serves as the means of identification.
Problem: How can an application or service precisely terminate behaviours of specific clients associated to user
accounts?
Solution: Block requests from any client belonging to a particular user or account if they exceed the rate limit.
Consequences:

+ Precision: only requests from specific users are blocked.
- Account impersonation: Abusive users can still overload the system by using multiple accounts, effectively
impersonating different users to evade the rate limiting measures.

Pattern 19: API Key Revocation

Context: Systems where API keys are used for authentication and authorization of clients accessing the API.
This pattern addresses the need to revoke API keys under certain circumstances.
Problem: How effectively and fairly terminate behaviours of clients authenticated using an API key?
Solution: Block requests from a particular API Key if they exceed the rate limit.
Consequences:

+ Precision: only requests from malicious client developers are blocked.
- Unfairness: Legitimate users may be mistakenly blocked if the API Key of their client application is flagged
for abusive behavior.

Additional considerations. Client applications driven by human users exceeding the Rate Limit could imply
that the application is being scraped: automatically accessed with request traffic growing beyond what human
users can be expected to generate. In this case, before blocking the client either based on they IP address, user
account or APIkey, a CAPTCHA challenge [51] could be displayed to the users if they exceed the rate limit. Then
block the user, the API Key, or the IP address in case the client fails to pass the CAPTCHA challenge.

In addition to Rate Limit Communication patterns, in the case where the system adopts a strategy that terminates
definitively all clients of abusive behaviours, it is also necessary to explicitly notify them that they will be blocked
if they exceed this limit. This information can also statically be part of Rate Limit Documentation.

18

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

8.2 Abusive behavior mitigation

Pattern 20: Requests Throttling

Context: An API is exposed to various clients, and there is a need to regulate the rate of incoming requests to
maintain quality of service, prevent abuse, and allocate resources efficiently.
Problem: How to control the rate of incoming requests to a web API to prevent abuse?
Solution: Instead of completely blocking requests from abusive clients, the solution is to throttle the bandwidth
allocated to transmit requests or responses to specific clients. Throttling limits the rate at which data can flow
between the client and the server, effectively slowing down the client’s access.
Consequences:

+ Fairness: Prevent abusive behavior while still allowing legitimate clients to access the API.
- Efficiency: Not effective against abusive users who might distribute requests across multiple clients to
bypass the throttling rate.

Pattern 21: Requests Queuing

Context: A system where loosing clients requests will affect the compliance of the system with its intended
services.
Problem: How to handle requests when the Rate Limit is exceeded, ensuring that clients do not lose their
requests and maintaining fairness in processing?
Solution:When the Rate Limit is exceeded, queue the requests and process them in order when the Rate Limit is
no longer exceeded.
Consequences:

+ Reliability: Ensures that clients do not lose their requests when they are rate limited, and they do not need
to resend them when they are allowed to.

- Timeliness: The queued requests’ responses might differ from those that would have been sent when the
requests were made.

- Capacity: The queued requests take up space on the server, which may run out of storage capacity in case
of abusive clients.

Known uses:
• Many content delivery networks (CDNs) use request queuing to manage incoming traffic and ensure fair
distribution of resources.

• Cloud-based services and APIs often employ request queuing to handle rate-limited requests without losing
them.

• E-commerce platforms may use request queuing during peak traffic to manage order processing.

Pattern 22: Rate Limit with a Reset Time

Context: An API is exposed to various clients, and there is a need to regulate the rate of incoming requests to
maintain quality of service, prevent abuse, and allocate resources efficiently.
Problem: How to prevent excessive requests from specific clients without definitely terminating their access to
the service?

19

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

Solution: Block requests from a specific client until a predefined time has passed since the Rate Limit was
exceeded, ensuring fair usage and providing clients with information about when they can resume requesting.
Consequences:

+ Transparency and usability: Clients are aware of when they can start sending their requests again.
- Bursting: Abusive users can still cause a spike in traffic if they schedule all their requests to occur immedi-
ately after the Rate Limit reset time.

9 SERVER-SIDE RATE LIMIT IMPLEMENTATION

Server-Side Rate Limit Implementation OR

Positioning XOR

Internal Rate Limiting

External Rate Limiting

Scope OR

Global Rate Limiting

Local Rate Limiting

Fig. 9. Rate Limit Server-Side Implementation Patterns

9.1 Rate Limiter Positioning
We have identified distinct variants of the Server-Side implementation of the Rate Limit pattern, which we
classified depending on the rate limiter component, its positioning, and scope. The solutions depend on the type
of system architecture in which the API is situated. By identifying the relevant runtime variant, developers can
effectively enforce rate limiting at the level of the system’s interfaces.

Pattern 23: Internal Rate Limiter

Context: A service provider have access to their own infrastructure and systems, allowing them to exert control
over the rate of incoming requests.
Problem: How to implement a controllable rate limiter that does not rely on external services?
Solution: Rate Limit is completely implemented as part of the server-side code that intercepts clients’ requests.

Backend Service

client

Ra
te

 L
im

ite
r

X

Too Many Requests

Fig. 10. Internal Rate Limiter Pattern

20

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

Service 1

SideCar 1

Service 2

SideCar 2

Service 3

SideCar 3

Service 4

SideCar 4

Service 5

SideCar 5

Service Mesh

  Cluster 1   Cluster 1

D
at

a
Pl

an
e

D
at

a
Pl

an
e

Mesh Trafic

Traffic Management Routing Logging

HTTP HTTPgRPC

Service Discovery Service Mesh monitoring Security and authorisations management

Metrics Configuration

Co
nt

ro
l

Pl
an

e

Fig. 11. Service mesh microservices architecture

Solution details: In the case of monolith service architectures [29], a rate limiter can be implemented as part
of the backend service.
In the case of microservices architectures [44], the Rate Limit policy can also be implemented internally

within the backend architecture (Figure 10). The exact placement of the rate limiter also depends on the chosen
infrastructure to implement the microservices architecture:

• Service Mesh based architecture. A service mesh is a dedicated infrastructure layer that facilitates service-
to-service communication within a microservices architecture [33]. It is typically implemented using a
sidecar proxy (Figure 11) that is deployed alongside each service in the application and communicates with
other sidecar proxies deployed alongside other services in the application to manage the flow of traffic
between services [28]. In a service mesh architecture the Rate Limit policy is placed in the control plane
to ensure a centralized and consistent enforcement of rate limit. It also provides dynamic configuration
capabilities, enabling easy management, updates and adjustments without requiring changes to individual
services. The goal is to employ the control plane to also gather Rate Limit and traffic related data and have
a centralized view of the Rate Limit impact on the architecture.
In this kind of architecture, different decisions can be adopted to implement rate limits internally within
the backend:
– The sidecar proxy can be configured to enforce rate limits on the inter-services communications based on
different criteria. This solution helps to lift the Rate Limit control from the application to the networking
layer (Figure 12); however, it still does not help to reduce the complexity of managing traffic.

– One of the services in a service mesh architecture can be used as a rate limiter service (Figure 13). This
service can then be configured to enforce rate limits on requests to other microservices within the service
mesh. This way, the Rate Limit strategy can be centrally managed and enforced for all the microservices
within the mesh.

• API Gateway based architecture. In this architecture, an API gateway [44] sits between the client and the
microservices. The API gateway acts as a reverse proxy, routing requests to the appropriate microservice.
It can be used to host a rate limiter component, which rate limits the incoming requests to each of the
microservices based on a defined strategy [1, 18].

Consequences:

21

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

Service 1 Service 2 Service 3 Service 4 Service 5

Service Mesh

  Cluster 1   Cluster 1

D
at

a
Pl

an
e

Co
nt

ro
l

Pl
an

e

D
at

a
Pl

an
e

Mesh Trafic

Traffic Management Routing Logging

HTTP HTTPgRPC

Service Discovery Service Mesh monitoring Security and authorisations management

Metrics Configuration

Rate limiter 1 Rate limiter 2 Rate limiter 3 Rate limiter 4 Rate limiter 4

Rate Limit Policies

Fig. 12. Internal rate limiter in each sidecar proxy

Rate Limit Service

SideCar 1

Service 2

SideCar 2

Service 3

SideCar 3

Service 4

SideCar 4

Service 5

SideCar 5

Service Mesh

  Cluster 1   Cluster 1

D
at

a
Pl

an
e

Co
nt

ro
l

Pl
an

e

D
at

a
Pl

an
e

Mesh Trafic

Traffic Management Routing Logging

HTTP HTTPgRPC

Service Discovery Service Mesh monitoring Security and authorisations management

Metrics Configuration

Rate Limit Policy

Fig. 13. Internal rate limiter as a microservice in the service mesh

+ Customization: Since it is part of the provider’s code, it can be tailored to match the specific rate limits
required by the application. It can also be customized to handle different types of requests differently.

+ Integration: Can be integrated more seamlessly with the application codebase, making it easier to update
as the application evolves.

- Increased complexity: It requires additional development effort and maintenance overhead for the applica-
tion and can add complexity to the application codebase.

Known uses:
• API Gateway: An API gateway can enforce a Rate Limit across multiple APIs or endpoints. An API gateway
between the client and the API can intercept and modify incoming requests. Many API gateways, such as
Kong or Tyk5, have built-in rate-limiting functionality.

5https://tyk.io/deployment-api-gateway/

22

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

• Envoy6 Proxy: The proxy is used by well-known service mesh technologies like Istio and Kuma7. It can be
used as a Front Proxy or an Edge Proxy for more granular rate-limiting.

Pattern 24: External Rate Limiter
Context: The solution to rate limiting is readily available from an external system.
Problem: How to accelerate and ease the implementation a rate limiting solution?
Solution: Rate Limit is implemented using a third-party services or library.

Ra
te

 L
im

ite
r

Backend Service

client
X

Too Many
Requests

Fig. 14. External Rate Limiter Pattern

Solution details: Select a suitable rate-limiting service or tool, configure the rate-limiting rules, integrate with
the API, test, monitor, and fine-tune as needed.
Consequences:

+ Speed of implementation: It can save the time of implementing the rate limiter component from scratch.
+ Compliance: It can help ensure compliance with regulations and industry standards related to rate limiting,
such as the Payment Card Industry Data Security Standard [39].

- Security: It may introduce new security risks, such as the exposure of sensitive data to external service
providers or the risk of service providers being compromised.

- Reliability: It makes the system dependent on external factors such as network connectivity and service
availability. In addition, it may introduce additional latency and overhead in the request processing.

Known uses:
• Cloud provider’s rate limiting service: Many cloud providers, such as AWS, Google Cloud, and Azure, offer
rate-limiting services that can be integrated with an application or API. These services typically provide
flexible rate-limiting rules and can scale to handle high traffic volumes.

• Third-party rate limiting services: There exist services such as Cloudflare, Akamai and Fastly, that can be
integrated with an application or API. These services often offer advanced features such as DDoS protection
and real-time monitoring.

• Open-source rate limiting libraries: Many open-source rate limiting libraries are available for various
programming languages, such as Redis, Guava, and Bucket4j. These libraries can be integrated with an
application or API and can provide basic rate-limiting functionality.

6https://www.envoyproxy.io
7https://kuma.io

23

https://www.envoyproxy.io
https://kuma.io

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

A hybrid approach can increase the system’s reliability by combining an External rate limiter and an Internal
rate limiter. The goal is to append additional functionalities to the internal rate limiter by selecting a suitable
external rate-limiting service or tool that provides the additional rate-limiting functionalities to integrate with the
internal rate limiter codebase. This approach can provide a backup mechanism in case the external rate limiter
fails or experiences performance issues and reduce single points of failure in the rate-limiting process. However,
developers and maintainers can face challenging integration problems occurring between the Internal rate limiter
and External rate limiter

9.2 Rate Limiter Scope

Pattern 25: Global Rate Limiter

Context: A multi-service architectures where ensuring uniform rate control across all interconnected services
and components is paramount for preventing system overload.
Problem: How to enforce a shared Rate Limit value for all service instances of a system?
Solution: Rate Limit is implemented using a Front Proxy to handle the overall amount of incoming traffic to a
system (can be a set of composed systems).
Solution details: This approach entails identifying the operational thresholds of the system that necessitate
the implementation of a global rate limiter. The Rate Limit Front Proxy can be enforced at either the application
layer by restricting the number of requests or at the network layer by configuring the network equipment to
regulate the flow of traffic passing through them.
Consequences:

- Inflexibility: It can be difficult to adjust or fine-tune to specific resource consumption rate.
Known uses:

• Envoy’s service proxy [5] is a well-known solution often used to implement global rate limiting in Service
Mesh architectures (Figure 11). It uses a gRPC rate limiting service to provide rate limiting for the entire
mesh. If the Rate Limit is exceeded, Envoy can respond with a 429 status code or can be configured to
throttle the requests until the Rate Limit is reset.

• Nginx ingress also allows configuring global rate limits [7]. This can be done by configuring the limit_req_zone
directive in the Nginx configuration file [9]. This directive sets up a shared memory zone that can be used to
track request rates, with a maximum number of requests per second, and configure how to handle requests
that exceed the limit.

• Redis8 is an in-memory data structure store that can be used to implement global rate limiting. It is
supported by several API Gateway pattern implementations (e.g., krakenD9, Spring Cloud Gateway10,
Kong11) to offer a global Rate Limit solution.

Pattern 26: Local Rate Limiter
Context:Amicroservices architecture where the use of a local rate limiter is crucial for ensuring eachmicroservice
can independently manage its incoming requests.
Problem: How to define and enforce different Rate Limit values for each service instance?
8https://redis.com/
9https://www.krakend.io/
10https://cloud.spring.io/spring-cloud-gateway
11https://konghq.com/

24

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

Solution: Rate Limit is implemented as a part of the service mesh using Edge Proxies.
Consequences:

+ Increased control: Local rate limiting gives more control over the rate limiting logic, allowing for more
fine-grained control and customization of the rate limiting rules for each service instance.

- System complexity: Implementing local rate limiters requires additional code and configuration, which can
increase the system’s complexity and potentially introduce bugs or performance issues.

Combining both Global and Local rate limiters can provide better control and flexibility over resource utilization
in a system. Global rate limiters can ensure that the overall load on the system is kept within acceptable levels,
preventing system overload and potential downtime. Meanwhile, local rate limiters can provide more fine-grained
control over specific service instances, allowing for more efficient use of resources and improved performance.
Known uses:

• Envoy also supports local non-distributed rate limits where the Rate Limit can be configured to be applied
on specific endpoints.

• GitHub API uses different rate limits for the different services it allows access to. For instance, the authen-
tication services have a different Rate Limit than the search on, where the authentication requests are
prioritized over unauthenticated requests when enforcing rate limits.

10 PATTERN VARIANTS DEFINITION APPROACH
This section describes our approach to extracting Rate Limit pattern variants. First, we provide details about the
static pattern variants. Secondly, we give an overview of the experimentation used to demonstrate these variants’
impact on performance and reliability.

10.1 Static Perspective
10.1.1 Representing Rate Limit pattern in OpenAPI. In this work, we have extended our analytics tools used
in [31, 32, 46–48] to observe the adoption of Rate Limit patterns in real-world APIs by systematically detecting
the ones using a Rate Limit through an analysis of 168402 static API descriptions written in OpenAPI, a widely
adopted standard language used by developers to specify various information about their APIs, including request
and response payloads, available endpoints, and acceptable media types.

The current version of the OpenAPI language specification does not include predefined constructs to describe
API Rate Limit values, even though OpenAPI descriptions can still include details such as the maximum number
of requests an API can handle per unit of time and the time interval in which these requests can be made. There
are various methods to include Rate Limit information in the OpenAPI documentation. Still, the easiest ones to
detect are when using the x-* extension mechanism, which includes extensions such as x-rate-limit, as show
in the example in Listing 1.

paths:

/items:

get:

description: Returns a list of items

responses:

200:

description: Successful response

x-rate -limit:

limit: 1000

25

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

interval: hour

Listing 1. Example of an OpenAPI extension to document Rate Limit enforced on a specific endpoint

Note that the keys attached to the x- prefix are not previously known. Thus we defined various detectors
based on our observations of samples of API descriptions containing responses featuring the 429 (Too Many
Requests) HTTP status code and keywords matching the regular expression:

/rate limit|rateLimit|rate-limit|ratelimiting|throttling/gi

In OpenAPI, the response header section conveys various information to the client after each request, including
Rate Limit information. Although the Rate Limit values are not typically described statically in the headers schema,
the presence of specific headers can indicate the existence of Rate Limit constraints for specific endpoints. For
example, the headermay include fields such as X-Rate-Limit-Limit to describe themaximumnumber of requests
allowed per unit of time and the time interval in which these requests can bemade, and X-Rate-Limit-Remaining
to indicate the number of remaining possible requests to make. Thus, analyzing the header section of the OpenAPI
description can provide valuable insights into the API’s Rate Limit practices and help identify which endpoints
are subject to rate-limiting constraints, e.g.: Listing 2.

responses:

200:

description: OK

headers:

X-Rate -Limit -Limit:

description: The maximum number of

requests per minute

type: integer

X-Rate -Limit -Remaining:

description: The number of remaining

requests in the current minute

type: integer

429:

description: Too Many Requests

content:

application/json:

schema:

type: object

properties:

message:

type: string

retryAfter:

type: integer

Listing 2. Communicating Rate Limit information throught headers in OpenAPI

The OpenAPI specification allows developers to attach descriptive information to each component of their
API through the use of description fields. These fields are intended to be written in natural language and
provide valuable information about the API, including its rate-limiting strategy. However, the lack of formatting
conventions for writing these descriptions poses a challenge for systematic analysis. The information within
these description fields can be difficult to extract and analyze, as it often lacks structure and consistency.

26

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

Rate Limit can also be used as a security scheme in OpenAPI by defining a security definition in the secu-
rityDefinitions section in the case of Swagger 2.x, and in the components/securitySchemes in the case of the
OpenAPI 3.x specification, and then including a reference to the security definition in the security section of an
operation.
When Rate Limit is used as a security scheme in Swagger 2.x as shown in Listing 3

paths:

/items:

get:

description: Returns a list of items

responses:

200:

description: Successful response

securityDefinitions:

rateLimit:

type: apiKey

in: header

name: X-Rate -Limit

description: Maximum number of requests

allowed in a given time frame

Listing 3. Defining Rate Limit security mechanism in Swagger 2.x

When Rate Limit is used as a security scheme in OpenAPI 3.x, as shown in Listing 4.
paths:

/items:

get:

description: Returns a list of items

responses:

200:

description: Successful response

components:

securitySchemes:

RateLimit:

type: apiKey

name: X-Rate -Limit

in: header

Listing 4. Defining Rate Limit security mechanism in OpenAPI 3.x

Based on these Rate Limit information locations in OpenAPI descriptions, we designed detectors to analyze
the use of this pattern from various perspectives. These detectors were used to search a large collection of APIs
to identify instances of the Rate Limit pattern.
Once the APIs that employed rate limiting were identified, we conducted a comprehensive analysis of their

specifications to understand the strategies used by developers. This included evaluating the specific parameters
and configurations for rate limiting, examining the response codes and messages returned, and analyzing the
methods and paths subject to rate limiting.

27

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

10.1.2 API Case Studies. In addition to the machine-readable documentation analysis in this study, we performed
a manual analysis of well-known APIs providers, such as: eBay (36), Shopify (4), New York Times (10), GitHub (2),
LinkedIn (1), Twilio (1), Stripe (1), Trello (1), Flickr (1).
The goal behind analyzing both APIs from the same provider and distinct providers is to see how the rate-

limiting strategy is defined across different providers or within the same provider’s APIs. The APIs we selected
belong to different domains.

10.2 Runtime perspective: Experimentation Overview
In addition to these API studies based on static analysis, we have studied metrics and indicators based on runtime
monitoring of APIs. We mainly investigated API patterns [56] that impact properties observable at runtime. One
study [37] focuses on the impact of the API Rate Limit pattern on the reliability properties of API clients through
an analytical model that considers specific workload configurations and rate limits and predicts success and
failure rates. We used the observability and monitoring tools, Grafana12 and Prometheus13, which are already
integrated with Istio to calculate those success and failure rates. In another study [36], we studied the performance
impact of the API Request Bundling pattern by using a regression model and multivariate regression analysis on
a microservice-based open-source business application with realistic workload scenarios. The regression model
predicts the total round trip time of a request based on server-side parameters like the type of the method and
the number of calls, using and not using Request Bundle. In those studies and others [17], we have experimented
with different perspectives when implementing Rate Limit and related patterns. As a result, we derived different
variations of the use of those patterns with regard to their positioning and scope.

In the Rate Limit empirical study, we wanted to evaluate its impact on the reliability of microservice-based
applications from an API Client perspective. For that purpose, we developed an analytical model based on client
workload parameters to predict the success and failure rates. We developed workload benchmark scenarios based
on the typical interactions extracted in a previous study [41]. We set up the experiment simulating 20 different
configurations in two environments: private cloud and Google cloud. We repeated the experiment more than 50
times to validate a proposed analytical model that measures the impact of Rate Limit on the reliability of APIs.
Many of the pattern variants extracted in the previous section were used to evaluate the impact of Rate Limit on
the performance and reliability of such an infrastructure by building up a robust prediction model [37]. We have
also defined new runtime variants described in Section 9.

11 RELATED WORK

11.1 Web API Patterns
Many studies have provided extensive descriptions of API patterns [42, 50, 53, 55] defined based on different
approaches and targeting several Web API characteristics including API structures, life cycle, and evolution.
Web API Structural Patterns. In [47], Serbout et al. followed a specification-based mining approach to find

recurring primitive structures within real-world web APIs. They extracted recurring structural API tree fragments
from an extensive collection of OpenAPI specifications and represented each using a defined tree visualization.
From a population of thousands of fragments, they selected those that frequently occur, have a relatively small
size, and are centered around resource collection. The authors presented a selection of variants for each primitive,
which can be composed to build larger API structures.

Web API Evolution Patterns. Researchers have utilized diverse approaches to explore and identify change
patterns in Web APIs. In one study [26], a use-case-based method was applied where code analysis and usage
logs of two consecutive versions of DHIS2 API were manually examined to understand the effects of changes
12https://grafana.com
13https://prometheus.io

28

https://grafana.com
https://prometheus.io

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

on clients. Another work [27] employed process mining techniques on API usage logs of the DHIS2 API and
identified 38 changes classified into six categories, with the most frequent being the addition of a new parameter.
API components deprecation is a practice that can be adopted when following the Two-in-production pattern,
which is defined as part of the evolution patterns language by Lübke et al. in [35], as part of a broader effort to
document Microservice API Patterns (MAP).

API Management Patterns. In [16], the authors defined an API management pattern language composed of 21
patterns focusing on collaboration. The study identified eight stakeholders in API management and documented
35 pattern candidates and 21 patterns for API management. The paper presents two representative patterns and
six general findings related to collaboration between the API provider team and the pattern language. The pattern
language is based on 12 cases and semi-structured interviews with 15 API management practitioners from mostly
European organizations over half a year.
API Quality Patterns. Also, as part of MAP, Stocker et al. propose in [50] five interface quality patterns that

focus on observable aspects of quality-attributed-driven interface design, including efficiency, security, and
manageability. These patterns include an API Key, Wish List, Rate Limit, Rate Plan, and Service Level Agreement.
The patterns aim to help API designers and product owners strengthen desired quality attributes and communicate
quality properties to stakeholders. In this paper, we narrowed our scope to only focus on Rate Limit variants.

11.2 Web API Rate Limiting
Rate-limiting strategies are commonly used to control access to data and protect backend resources, but setting
an appropriate Rate Limit can be challenging. In [19], Firmani et al. propose a statistical model and a technique
based on uniform sampling to select an appropriate Rate Limit for Web APIs and validates it through a case
study involving a large bus company. The proposed approach aims to enable organizations to choose a Rate
Limit that prevents unauthorized access while still allowing the creation of valuable services, especially for
public administrations and private companies providing services whose quality is regulated by formal business
agreements on service levels. On another side, in [18], El Malki et al. suggest that Rate Limiting can increase the
reliability properties of APIs given a specific workload situation but finding the right balance between improving
the success rate and keeping the failure rate at a certain minimum level is challenging. El Malki et al. propose an
analytical model to accurately predict the impact of different configurations and workloads on the reliability
properties of APIs and a solid method for adaptively fine-tuning rate limits. The model was empirically validated
using 50 different configurations in a private cloud and an additional 50 configurations in Google Cloud, and it
showed reasonably close prediction errors to reality.
In contrast to prior works, which propose statistical models or analytical approaches to set rate limits for

Web APIs, we focus on the Rate Limit pattern and present a comprehensive description of all its configuration
possibilities. Our analysis of this API pattern includes both runtime and static analysis perspectives. This level
of investigation has not been previously undertaken in the literature. While previous works have validated the
effectiveness of rate-limiting strategies in preventing unauthorized access and improving the reliability properties
of APIs, our work provides a more detailed examination of the pattern and its various implementation options.

11.3 API Analytics
Adopting a static analysis approach in our previous research on large datasets of OpenAPI [10] descriptions has
led to the development of a comprehensive set of methods for API analytics. These methods have enabled us to
gain valuable insights into the structural patterns of APIs, the evolution of APIs over time, and specific features
and practices such as compatibility and the adoption of deprecation. Our research has provided a thorough
understanding of the API landscape and allowed us to create more effective API analysis, design, and visualization
tools.

29

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

In [47], the authors found that most APIs are small, with a moderate correlation between their functional
structures and data models. Another study [30, 31] showed that APIs tend to grow in size and changes to widely
used APIs can have a significant impact. To aid API designers, we classified commonly occurring fragments in API
structures into pattern primitives and variants [46]. The schema compatibility of a large collection of public web
APIs was determined [48], revealing a relatively high number of compatible APIs but a low number of compatible
endpoints within the same API. Our analysis of the evolution of API operations [32] showed low utilization of
deprecation. Observing versioning practices during Web APIs evolution, the authors of [45] detected, using a
systematic approach, the adoption of 55 different version identifier formats, where the commonly adopted one
was semantic versioning, which was used constantly during the histories of 62% of the studied 7114 Web APIs.

12 CONCLUSION
In this paper, we present a collection of pattern related to the adoption of API Rate Limit pattern. We grouped
them into seven sub-collections depending on problems they target: how to set its value, how to meter API usage,
how to define its scope, how to implement it on the server-side and how to react to clients exceeding their limit.
The findings of our static analysis – performed over a large set of real-world web APIs – indicate that while rate
limiting is a well-known method for mitigating resource exhaustion, there is a lack of standardized and widely
adopted machine-readable formats for describing rate limits. Moreover, there is no consensus on configuring API
hosting platforms and communicating rate limits to API clients.
The patterns we have identified are related to the documentation and communication of API Rate Limits,

and the metrics used to statically or dynamically define their values. Other variants are related to the level of
granularity at which a Rate Limit strategy can be applied (i.e., how clients are identified and resources scoped),
and implementation-related variants about the placement of a rate limiter (internal vs. external, local vs. global).
We finally distinguish how to mitigate or stop abusive behavior as a reaction to Rate Limit violations: e.g., by
blacklisting or throttling clients, temporarily or permanently.
Our study enhances understanding of the current state of web API Rate Limit pattern as it provides valuable

insights for web API designers, developers and researchers.
Acknowledgments.We would like to thank our shepherd Dilum Bandara, for his valuable feedback on our

paper. This was supported by the API-ACE project, funded by SNF project 184692 and FWF (Austrian Science
Fund) project I 4268.

REFERENCES
[1] Custom Rate Limiting for Microservices. https://dzone.com/articles/rate-limiting-for-microservices.
[2] Export a REST API from API Gateway. https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-export-api.html.
[3] Advanced request throttling with Azure API Management. https://learn.microsoft.com/en-us/azure/api-management/api-management-

sample-flexible-throttling.
[4] ebay API Call Limits . https://developer.ebay.com/develop/apis/api-call-limits.
[5] Istio. https://istio.io/latest/docs/tasks/policy-enforcement/rate-limit.
[6] Nasa Open APIs . https://api.nasa.gov/.
[7] Nginx shared memory zone. http://nginx.org/en/docs/http/ngx_http_limit_req_module.html#limit_req_zone, .
[8] Rate Limiting with NGINX and NGINX Plus. https://www.nginx.com/blog/rate-limiting-nginx/, .
[9] Nginxrate limiting. https://www.nginx.com/blog/rate-limiting-nginx/, .
[10] OpenAPI Initiative. https://www.openapis.org/.
[11] Stripe Rate Limit. https://stripe.com/docs/rate-limits.
[12] Esi Adeborna and Kenneth K Fletcher. An empirical study of web api quality formulation. In Services Computing–SCC 2020: 17th

International Conference, Held as Part of the Services Conference Federation, SCF 2020, Honolulu, HI, USA, September 18–20, 2020, Proceedings
17, pages 145–153. Springer, 2020.

[13] Suhail Ahmad and Ajaz Hussain Mir. Protection of centralized sdn control plane from high-rate packet-in messages. International
Journal of Information Security, April 2023. doi: 10.1007/s10207-023-00685-z.

30

https://dzone.com/articles/rate-limiting-for-microservices
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-export-api.html
https://learn.microsoft.com/en-us/azure/api-management/api-management-sample-flexible-throttling
https://learn.microsoft.com/en-us/azure/api-management/api-management-sample-flexible-throttling
https://developer.ebay.com/develop/apis/api-call-limits
https://istio.io/latest/docs/tasks/policy-enforcement/rate-limit
https://api.nasa.gov/
http://nginx.org/en/docs/http/ngx_http_limit_req_module.html#limit_req_zone
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.nginx.com/blog/rate-limiting-nginx/
https://www.openapis.org/
https://stripe.com/docs/rate-limits

API Rate Limit Adoption – A pattern collection EuroPLoP 2023, July 5–9, 2023, Irsee, Germany

[14] Alexander Bakhtin, Abdullah Al Maruf, Tomas Cerny, and Davide Taibi. Survey on tools and techniques detecting microservice api
patterns. In 2022 IEEE International Conference on Services Computing (SCC), pages 31–38. IEEE, 2022.

[15] David Bermbach and Erik Wittern. Benchmarking web api quality – revisited. Journal of Web Engineering, 19(5-6):603–646, Oct. 2020.
doi: 10.13052/jwe1540-9589.19563. URL https://journals.riverpublishers.com/index.php/JWE/article/view/5719.

[16] Gloria Bondel, Andre Landgraf, and Florian Matthes. Api management patterns for public, partner, and group web api initiatives with a
focus on collaboration. In 26th European Conference on Pattern Languages of Programs (EuroPLoP), pages 1–17, 2021.

[17] Amine El Malki and Uwe Zdun. Combining api rate limiting, request bundle and load balancing patterns in microservice architectures:
Performance and reliability analysis. In Submitted for publication, 2022.

[18] Amine El Malki, Uwe Zdun, and Cesare Pautasso. Impact of api rate limit on reliability of microservices- based architectures. In 16th
International Conference on Service-Oriented System Engineering (SOSE 2022), pages 19–28, San Francisco, USA, August 2022. IEEE.

[19] Donatella Firmani, Francesco Leotta, and Massimo Mecella. On computing throttling rate limits in web apis through statistical inference.
In 2019 IEEE International Conference on Web Services (ICWS), pages 418–425. IEEE, 2019.

[20] Antonio Gamez-Diaz, Pablo Fernandez, Antonio Ruiz-Cortés, Pedro J Molina, Nikhil Kolekar, Prithpal Bhogill, Madhurranjan Mohaan,
and Francisco Méndez. The role of limitations and slas in the api industry. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 1006–1014, 2019.

[21] Google. Rate limiting strategies and techniques, 08 2019. URL https://cloud.google.com/architecture/rate-limiting-strategies-techniques.
[22] Joseph L Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M Tilbury. Feedback control of computing systems. John Wiley & Sons, 2004.
[23] J. Higginbotham. Principles of Web API Design: Delivering Value with APIs and Microservices. Addison-Wesley Signature Series. Pearson

Education (US), 2021. ISBN 9780137355631.
[24] James Higginbotham. Cloud native cloud native api management, 2020. URL https://www.enable-u.nl/wp-content/uploads/2021/03/

White-Paper-Cloud-Native.pdf.
[25] Alefiya Hussain, John Heidemann, and Christos Papadopoulos. A framework for classifying denial of service attacks. In Proceedings of

the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’03, page 99–110.
ACM, 2003. ISBN 1581137354. doi: 10.1145/863955.863968.

[26] Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. Classification of changes in api evolution. In 2019 IEEE 23rd
International Enterprise Distributed Object Computing Conference (EDOC), pages 243–249. IEEE, 2019.

[27] Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. Web api evolution patterns: A usage-driven approach. Journal of
Systems and Software, 198:111609, 2023. doi: 10.1016/j.jss.2023.111609.

[28] Arne Koschel, Marvin Bertram, Richard Bischof, Kevin Schulze, Marc Schaaf, and Irina Astrova. A look at service meshes. In Proc. 12th
International Conference on Information, Intelligence, Systems & Applications (IISA), pages 1–8. IEEE, 2021.

[29] Alexander Krause, Christian Zirkelbach, Wilhelm Hasselbring, Stephan Lenga, and Dan Kröger. Microservice decomposition via static
and dynamic analysis of the monolith. In 2020 IEEE International Conference on Software Architecture Companion (ICSA-C), pages 9–16.
IEEE, 2020.

[30] Fabio Di Lauro, Souhaila Serbout, and Cesare Pautasso. Towards large-scale empirical assessment of web apis evolution. In 21st
International Conference on Web Engineering (ICWE2021), pages 124–138, Biarritz, France, May 2021. Springer.

[31] Fabio Di Lauro, Souhaila Serbout, and Cesare Pautasso. A large-scale empirical assessment of web api size evolution. Journal of Web
Engineering, 21(6):1937–1980, November 2022.

[32] Fabio Di Lauro, Souhaila Serbout, and Cesare Pautasso. To deprecate or to simply drop operations? an empirical study on the evolution
of a large openapi collection. In 16th European Conference on Software Architecture (ECSA), pages 38–46, Prague, Czech Republic,
September 2022.

[33] Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao, and Yanbo Han. Service mesh: Challenges, state of the art, and future research
opportunities. In 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE), pages 122–1225. IEEE, 2019.

[34] John DC Little and Stephen C Graves. Little’s law. Building intuition: insights from basic operations management models and principles,
pages 81–100, 2008.

[35] Daniel Lübke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun, and Mirko Stocker. Interface evolution patterns: Balancing compatibility
and extensibility across service life cycles. In Proceedings of the 24th European Conference on Pattern Languages of Programs (EuroPLoP),
pages 1–24, 2019.

[36] Amine El Malki and Uwe Zdun. Evaluation of api request bundling and its impact on performance of microservice architectures. In
IEEE International Conference on Services Computing (SCC 2021), September 2021. doi: https://doi.org/10.5281/zenodo.5087467. URL
http://eprints.cs.univie.ac.at/6898/.

[37] Amine El Malki, Uwe Zdun, and Cesare Pautasso. Impact of api rate limit on reliability of microservices-based architectures. In 16th
IEEE International Conference on Service-Oriented System Engineering (SOSE2022), 2022. URL http://eprints.cs.univie.ac.at/7399/.

[38] Haithem Mezni. Web service adaptation: A decade’s overview. Computer Science Review, 48:100535, 2023.
[39] Edward A Morse and Vasant Raval. Pci dss: Payment card industry data security standards in context. Computer Law & Security Review,

24(6):540–554, 2008.

31

https://journals.riverpublishers.com/index.php/JWE/article/view/5719
https://cloud.google.com/architecture/rate-limiting-strategies-techniques
https://www.enable-u.nl/wp-content/uploads/2021/03/White-Paper-Cloud-Native.pdf
https://www.enable-u.nl/wp-content/uploads/2021/03/White-Paper-Cloud-Native.pdf
http://eprints.cs.univie.ac.at/6898/
http://eprints.cs.univie.ac.at/7399/

EuroPLoP 2023, July 5–9, 2023, Irsee, Germany Souhaila Serbout, Amine El Malki, Cesare Pautasso, and Uwe Zdun

[40] Stefan Nastic, Andrea Morichetta, Thomas Pusztai, Schahram Dustdar, Xiaoning Ding, Deepak Vij, and Ying Xiong. Sloc: Service level
objectives for next generation cloud computing. IEEE Internet Computing, 24(3):39–50, 2020.

[41] Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Sebastian Meixner, and Sebastian Geiger. Metrics for assessing architecture
conformance to microservice architecture patterns and practices. In 18th International Conference on Service Oriented Computing (ICSOC
2020), page 580–596, December 2020.

[42] Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai Josuttis. Microservices in practice, part 2: Service
integration and sustainability. IEEE Software, 34(2):97–104, 2017.

[43] Marek Polák and Irena Holubová. REST API management and evolution using MDA. In Proceedings of the Eighth International C*
Conference on Computer Science & Software Engineering, pages 102–109, 2015.

[44] Chris Richardson. Microservice architecture patterns and best practices. URL: http://microservices. io/index. html [accessed: 2018-03-17],
2016.

[45] Souhaila Serbout and Cesare Pautasso. An empirical study of web api versioning practices. In 23rd International Conference on Web
Engineering (ICWE2023), Alicante, Spain, June 2023. Springer.

[46] Souhaila Serbout, Cesare Pautasso, Uwe Zdun, and Olaf Zimmermann. From openapi fragments to api pattern primitives and design
smells. In European Conference on Pattern Languages of Programs (EuroPLoP’21), Virtual Kloster Irsee, Germany, July 2021. ACM.

[47] Souhaila Serbout, Fabio Di Lauro, and Cesare Pautasso. Web apis structures and data models analysis. In Companion Proc. 19th
International Conference on Software Architecture (ICSA), pages 84–91, 2022.

[48] Souhaila Serbout, Cesare Pautasso, and Uwe Zdun. How composable is the web? an empirical study on openapi data model compatibility.
In IEEE World Congress on Services (ICWS Symposium on Services for Machine Learning), Barcelona, Spain, July 2022. IEEE.

[49] Salah Sharieh and Alexander Ferworn. Securing apis and chaos engineering. In 2021 IEEE Conference on Communications and Network
Security (CNS), pages 290–294. IEEE, 2021.

[50] Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso. Interface quality patterns: Communicating and
improving the quality of microservices apis. In Proceedings of the 23rd European Conference on Pattern Languages of Programs, pages
1–16, 2018.

[51] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. CAPTCHA: Using hard AI problems for security. In Eurocrypt,
volume 2656, pages 294–311. Springer, 2003.

[52] Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke. Guiding architectural decision making on quality
aspects in microservice apis. In Proc. 16th International Conference on Service-Oriented Computing (ICSOC), pages 73–89, Cham, 2018.
Springer. ISBN 978-3-030-03596-9.

[53] Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke. Guiding architectural decision making on quality
aspects in microservice apis. In International Conference on Service-Oriented Computing (ICSOC), pages 73–89. Springer, 2018.

[54] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. Interface representation patterns: crafting and consuming message-
based remote apis. In Proceedings of the 22nd european conference on pattern languages of programs (EuroPLoP), pages 1–36, 2017.

[55] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Uwe Zdun, and Cesare Pautasso. Microservice api patterns: Rate limit, 2020. URL
https://www.microservice-api-patterns.org/patterns/quality/qualityManagementAndGovernance/RateLimit.

[56] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Uwe Zdun, and Cesare Pautasso. Patterns for API Design – Simplifying Integration with
Loosely Coupled Message Exchanges. Addison-Wesley Professional, Vaughn Vernon Signature Series, 2022.

32

https://www.microservice-api-patterns.org/patterns/quality/qualityManagementAndGovernance/RateLimit

	Abstract
	1 Introduction
	2 Rate Limit Pattern and its related adoption patterns
	3 Rate Limit Configuration
	4 Rate Limit Configuration Metrics
	5 Rate Limit Documentation Patterns
	6 API Rate Limit Communication
	7 Rate Limit Granularity
	7.1 Client
	7.2 Resource Granularity

	8 Provider Reaction to Rate Limit Exceeding
	8.1 Abusive behavior Termination
	8.2 Abusive behavior mitigation

	9 Server-side Rate Limit Implementation
	9.1 Rate Limiter Positioning
	9.2 Rate Limiter Scope

	10 Pattern Variants Definition Approach
	10.1 Static Perspective
	10.2 Runtime perspective: Experimentation Overview

	11 Related Work
	11.1 Web API Patterns
	11.2 Web API Rate Limiting
	11.3 API Analytics

	12 Conclusion
	References

