
Mining Security Documentation Practices
in OpenAPI Descriptions

Diana Carolina Muñoz Hurtado
Software Institute

USI Lugano, Switzerland
carolina.munoz@usi.ch

Souhaila Serbout
Software Institute

USI Lugano, Switzerland
souhaila.serbout@usi.ch

Cesare Pautasso
Software Institute

USI Lugano, Switzerland
c.pautasso@ieee.org

Abstract—Security is an integral requirement of any trust-
worthy software architecture, particularly critical for application
programming interfaces (APIs). In this paper, we survey secu-
rity documentation practices, specifically API security schemes
related to authentication and authorization, by mining a large
collection of OpenAPI descriptions retrieved from open-source
GitHub repositories. Our study focuses on detecting existing
security schemes and evaluating their prevalence and positioning
within API descriptions. We distinguish whether security schemes
are introduced locally (at the path or operation level) or globally
(for the entire API). Our analysis highlights scenarios where
security schemes are featured in APIs in different proportions
over time, thus tracking whether the API documentation tends
to include more (or less) security details as the API evolves.

Keywords: Web APIs, OpenAPI descriptions, API keys, Secu-
rity schemes, Security documentation practices

I. INTRODUCTION

APIs play an important role in open software architectures,
as they promote reuse and composition and facilitate access
to data sources, information repositories, and computational
services [36, 9, 29]. Public Web APIs are meant to be invoked
from any Internet-connected client, which often creates a need
to control, protect, and limit access to known authenticated
clients [24, 22]. These security measures should be com-
municated to clients to ensure they can select trusted APIs
they can rely upon and properly configure secure access to
them [13, 25]. From the client’s perspective, the absence
of security documentation can negatively impact the API’s
perceived trustworthiness and overall quality [4, 15, 27, 2, 35].
And, from the provider’s perspective, this can lead to misuse
of the API, potentially resulting in unintended exposure of
sensitive information [5, 16, 7, 34], vulnerability exploitation,
or unauthorized access [12, 33, 3]. Having security documen-
tation can also speed up onboarding new clients and reduce
the integration process cost [32, 17].

In this paper, we investigate the state of security documen-
tation practices in Web API descriptions. We focus on a large
collection of API models mined from open-source GitHub
repositories represented using OpenAPI [1], a widely adopted
specification for modeling APIs in a structured, machine-
readable format allowing large-scale fully automated analy-
sis [30, 19, 21]. We aim to analyze how API designers decide
to convey security information within these descriptions. We
also track how the security coverage of APIs [26] evolves

over time to determine whether security is documented from
the beginning of the API history, or it is included only later
once the API reaches a given size.

This large-scale study addresses the following questions:

RQ1) To what extent are security aspects documented in Web
APIs described using Swagger 2.0 or OpenAPI 3.0?

This question aims to examine whether and how security-
relevant design decisions are documented in API specifications
written in different versions of the OpenAPI standard.

RQ2) How does the level of detail in security documentation
within OpenAPI descriptions vary along API histories?

Security schemes can be easily applied uniformly across
the entire API. Alternately, each operation can be secured
in a different way. The goal is to systematically examine all
possible alternative granularity levels at which security can be
applied and explore possible factors influencing this decision.

RQ3) How does security coverage correlate with API size and
evolve over time?

The goal is to reveal patterns affecting whether API providers
improve or modify security documentation, reflecting evolving
security needs, and whether security is present from the start
of an API lifecycle or added as the API grows.

To answer these questions, we perform a detailed analysis of
security-related fields and keywords in OpenAPI descriptions.
The analysis is performed on a snapshot of the APIstic
dataset [28] composed of 915 988 OpenAPI specifications
corresponding to commits pushed to Github between 2015 and
2023, and belonging to 270 564 distinct APIs. The collection
contains only the commits that have affected the specification
and not all of the repository, which fits with the goal of the
analysis in this paper.

Our findings reveal that a significant number of specifi-
cations lack security documentation, with a very slow im-
provement in the security coverage over time. Moreover, APIs
described using OpenAPI 3.0 (OAS 3.0) tend to incorporate
more security features compared to Swagger 2.0 (OAS 2.0).
In terms of the granularity of how security mechanisms are
described, we found that they tend to be applied globally and
uniformly to all API operations.

The paper is outlined as follows: Sec. II provides back-
ground on security documentation in OpenAPI specifications.

https://orcid.org/0000-0002-4769-3444
https://orcid.org/0000-0002-8144-2606
https://orcid.org/0000-0002-2748-9665

Sec. III reviews related work in API security. Sec. IV intro-
duces the definition of key detectors and metrics employed in
the analysis. In Sections V, VI, and VII we present the analy-
sis results related to each of the three research questions, which
are further discussed in Section VIII. Section IX addresses
potential threats to validity in our study, outlining limitations
and assumptions. Finally, Section X draws conclusions based
on the findings and discusses future research directions.

II. BACKGROUND

A. OpenAPI Security Components and Schemes

The modularity of the OpenAPI language allows defining
the security schemes in the components section, under the
securitySchemes key in the case of OAS 3.0 and under
the definitions section in the case of OAS 2.0. A security
scheme defines how an API is secured by documenting the au-
thentication and authorization methods that the API supports.
Each scheme is part of the API documentation, enabling API
consumers to understand how to interact with the API securely.

The current version of OpenAPI supports the definition of
five types of security schemes:
• API Key: The client obtains and sends its unique API key
as part of a request header, query parameter, or cookie [23].
• HTTP Authentication: includes standard HTTP authenti-
cation methods like Basic (username/password), Bearer (such
as a JWT), and others.
• OAuth2: a more complex authorization framework that sup-
ports several ”flows” (or grant types), like implicit, password,
client credentials, and authorization code, for different types
of applications and security requirements [10].
• OpenID Connect: an identity layer on top of OAuth2,
enabling clients to verify the identity of end-users based on
the authentication performed by an authorization server [11].
• Mutual TLS: a protocol where both client and server au-
thenticate each other’s identities using digital certificates [31].

The definition in the securitySchemes section depends
on the type of Security Scheme used. In Listing 1 we show an
example of a security scheme definition under OpenAPI 3.0
where an API uses OAuth2 [18] with the authorization code
flow to provide secure access to social media posts.

B. Security Documentation in Swagger 2.0 vs. OpenAPI 3.0

We categorize and evaluate security documentation practices
based on two versions of the specification language to assess
the impact of OAS 3.0’s enhancements. OAS 2.0 already
allowed reusable security definitions for API keys, basic
authentication, and OAuth2, but with limited configu-
ration options. OAS 3.0 introduced the securitySchemes
component within a modular components section, en-
abling more flexible and reusable security definitions across
endpoints. Additionally, OAS 3.0 expanded OAuth2 sup-
port with multiple flow types (implicit, password,
clientCredentials, and authorizationCode) and
introduced new authentication types, such as HTTP au-
thentication schemes (e.g., bearer and basic), OpenID
Connect, and Mutual TLS.

III. RELATED WORK

A recent systematic literature review of API security re-
search by Dı́az-Rojas et al. identifies 66 distinct threats, most
notably spoofing and tampering, and explored a suite of coun-
termeasures including 21 techniques, 11 design patterns, and
34 methods to fortify APIs against these vulnerabilities [8].
More in detail, Cheh and Chen propose a semi-automated
method for identifying security flaws in the design of API
specifications using the OpenAPI standard: the endpoints
related to sensitive data fields are analyzed for exposure [5].
They define risk exposure as the case where a field is sent
through an endpoint that does not require authorization or au-
thentication. Their technique, applied to the Open Bank Project
API which includes 304 API operations in 142 endpoint paths
and 345 data schemas containing 402 data fields identified
31 sensitive data fields, 29 insufficiently protected API calls,
and 34 high-risk calls prone to exposing sensitive data. In
our case, we aim to map the endpoint landscape by analyzing
how security requirements are described across a very broad
spectrum of APIs.

Bermbach and Wittern performed a study that revisited
the performance, availability, and security configurations of
popular web APIs, and underscored the dynamic and varied
nature of web API ecosystems [4]. A particularly relevant
finding for our paper was the evolution of Transport Layer
Security (TLS) preferences among API providers, reflecting
shifts toward stronger security postures. In this study we aim at
analyzing how such trend is reflected in OpenAPI descriptions.

Chen et al. introduce API Prober 2.0, a tool for collab-
orative annotation and testing of security schemes [6]. AP2
was tested on nine real-world APIs, evaluating their security
scheme attributes. In this study, we statically analyzed different
decisions made by developers to implement security schemes
by providing a systematic classification of API commits in
which security schemes can be detected. This approach allows
us to automatically classify a large number of API commits
into different levels of granularity.

Listing 1: Example of Security Component definition in
OpenAPI in OAS 3.0
components :

s e c u r i t y S c h e m e s :
OAuth2 : # Custom name f o r t h e OAuth2

s e c u r i t y scheme
t y p e : oa u t h2
f l o w s :

a u t h o r i z a t i o n C o d e :
a u t h o r i z a t i o n U r l : h t t p s : / /

s o c i a l m e d i a . com / o a u t h / a u t h o r i z e
t o k e n U r l : h t t p s : / / s o c i a l m e d i a . com /

o a u t h / t o k e n
r e f r e s h U r l : h t t p s : / / s o c i a l m e d i a . com /

o a u t h / r e f r e s h
s c o p e s :

r e a d : Read a c c e s s t o p o s t s
w r i t e : Wr i t e a c c e s s t o p o s t s

IV. DEFINITIONS

A. Security coverage granularity

OpenAPI allows the application of security schemes at
different levels within the API documentation, providing flexi-
bility in how to enforce authentication and authorization across
the API. Once defined, these security schemes can be applied
with the security keyword, either globally to the entire API
or to individual operations (like GET, POST, PUT, etc.) of
specific endpoints. In this section, we introduce the possible
alternatives for decisions taken regarding the level at which
API designers decide to apply security mechanisms. In Tab. I,
we summarize the different granularity levels adopted when
documenting security in OAS, which we explain in details
in the rest of this section. The color coding is selected to
reflect the gradual transition from (a specification where
the security component is completely absent) to (a security-
rich documentation combining both local and global security
properties to cover all the operations).

1) Globally secured (GSec): A security scheme can be
applied to the entire API. This means that every operation
in the API requires clients to adopt the specified security
scheme. This is defined by including the security section
at the root level of the OpenAPI document (Listing 2). In the
class Globally Secured (GSec) we include only the commits
of API specifications that exclusively enforce security at the
global level.

More precisely, we define the Global(api) detector:

Global(api) =

True if a security scheme is referenced at the

root of the api document
False otherwise

We define the Local(p) detector as:

Local(p) =

{
True if ∃m ∈ methods(p) sec(p,m) = True

False if ∀m ∈ methods(p) sec(p,m) = False

where sec(p, m) returns True if a security scheme is ex-
plicitly defined for the specific method m in a given path p;
otherwise, it returns False.

An api can be classified as globally secure if and only if:
1) Global(api) is True.
2) For all paths p of the api, Local(p) is False.
Formally, the rule can be expressed as:

(Global(api)) ∧ (∀p ∈ paths(api),¬Local(p))
=⇒ GSec(api)

(1)

In the example of Listing 2, OAuth2 is applied globally with
read and write scopes, indicating that all operations require
OAuth 2.0 authentication with at least one of these scopes.

2) Locally Secured: Security schemes can also be applied at
the operations level. This fine-grained specification of different
authentication requirements for specific API endpoints is done
by including a security section within the operation definition.
This approach is useful when only specific operations require
authentication or when different operations require different
levels of access. In the example (Listing 2), only read access

Table I: Security Granularity Level Classification

Class Acronym

Globally Secured and Fully Locally Secured GFLSec
Fully Locally Secured FLSec
Globally Secured and Partially Locally Secured GPLSec
Globally Secured GSec

Partially Locally Secured PLSec
Not Secured NoSec

Global security applied but no paths GSec-No-Paths
Only component defined but no paths C-No-Paths

Missing Security Component Definition UndefSec

Listing 2: Example of security scheme application
o p e n a p i : 3 . 0 . 3
i n f o :

. . . .
s e c u r i t y :

− OAuth2 : [read , w r i t e]
p a t h s :

/ p o s t s :
g e t :

s e c u r i t y :
− OAuth2 : [r e a d]

p o s t :
s e c u r i t y :

− OAuth2 : [w r i t e]

is required for the GET operation, while the POST operation
requires write access. Since some paths can be secured while
others can have no local security defined, we distinguish:

Fully Locally Secured (FLSec): A commit of an API
specification is classified as Fully Locally Secured if all paths
have at least one method with an explicitly defined local
security scheme. This way, the entire API is covered without
relying on global security settings.

Using the previously defined detectors:
(¬Global(api)) ∧ (∀p ∈ paths(api), Local(p))

=⇒ FLSec(api)
(2)

Partially Locally Secured (PLSec): A commit of API
specification is classified as Partially Locally Secured if at
least one path has a method with a security scheme applied to
it, while at least another different path does not have such a
method. While some paths in the API enforce security locally,
others have no security defined, not even globally.

(¬Global(api))∧(
∃ p, p′ ∈ paths(api), p ̸= p′,Local(p) ̸= Local(p′)

)
=⇒ PLSec(api)

(3)

3) Hybrid Combinations: API descriptions may combine
global and local security schemes to describe different secu-
rity policies across various paths and operations. Two main
combinations arise from the interaction between globally and
locally applied security schemes.

Globally Secure and Fully Locally Secured (GFLSec): In
this case, the API applies a global security scheme at the root

level of the OAS document while also defining local security
schemes at every path:

Global(api) ∧ (∀p ∈ paths, Local(p))
=⇒ GFLSec(api)

(4)

Globally Secure and Partially Locally Secured (GPLSec):
In this case, there exist some paths where a local specification
of security properties is missing. These paths rely solely on
the global security scheme.

Global(api)∧(
∃ p, p′ ∈ paths(api), p ̸= p′,Local(p) ̸= Local(p′)

)
=⇒ GPLSec(api)

(5)

4) Lack of security definitions: Not Secured (NoSec): A
commit of an API specification is classified as Not Secured if
neither global nor local security schemes are defined for any
of its paths. This means that – although a security component
definition is present – the API description never uses it as it
does not document any form of security enforcement, making
all paths open to unauthenticated and unauthorized access.

(¬Global(api)) ∧ (∀p ∈ paths(api),¬Local(p))
=⇒ NoSec(api)

(6)

Global Security Applied but Without Path in Specification
(GSec-No-Paths): In this configuration, the API defines a
global security scheme at the root level of the specification,
but there are no paths listed in the API description. This means
that while a global security policy exists, no specific operations
or endpoints are available in the specification to actually use
the globally declared security schemes.

Global(api) ∧ (paths(api) = ∅) =⇒ GSec-No-Paths(api)

Only Component Defined Without Paths in Specifications
(C-No-Paths):

Also in this case the API specification defines security
components, but these cannot be referenced from any path,
because there are no paths listed.

(¬Global(api)) ∧ (paths(api) = ∅)) =⇒ C-No-Paths(api) (7)

Missing Component Definition (UndefSec):
The last category includes any API specification in which

there are no security components defined at all.

B. Security Coverage Metrics

To quantitatively evaluate the proportion of security cover-
age [26], for each api specification, we count the number of
secured operations SO covered by a security scheme applied
either globally, locally, or both. The security coverage of the
API operations SOC is defined as:

SOC(api) =
SO(api)

TO(api)

where TO is the total number of operations described in
the specification.

Table II: APIs/Commits with or without security components

APIs 270 564 100%

APIs Without Security Component 166 585 62%
APIs With Security Component 104 606 39%
→ OAS 2.0 46 305 17%
→ OAS 3.0 58 301 21%
→ APIs with both OAS 2.0 and OAS 3.0 descriptions 697 1%

APIs With and Without Security Component 6 242 2%
APIs With Security Component 97 737 36%

Commits 915 988 100%

Commits Without Security Component 482 700 53%
Commits With Security Component 433 288 47%
→ OAS 2.0 144 771 16%
→ OAS 3.0 288 517 32%

Table III: Security Schemes in APIs and Commits

Security Scheme #APIs #Commits
OAS 2.0 OAS 3.0 OAS 2.0 OAS 3.0

apiKey 27 318 27 329 87 393 127 594
oauth2 20 813 19 444 52 133 83 390
http - 26 096 - 140 920
basic 12 257 - 39 431 -
openIdConnect - 895 - 4 241
mutualTLS - 13 - 14

C. API Evolution and Security

To study the introduction of security documentation features
along the lifecycle of an API, we collected the entire history
of the OpenAPI artifacts as reflected in its git commits.

We define the API history H(api) := {c, c ∈ git(api)} as
the ordered set of commits of the API specification found in
its GitHub repository. t(c) indicates the commit timestamp.

The results of our analysis can be read at the commit
level, where every API specification is classified and compared
individually, or at the API level, where the history of each
API is considered and the classification of its commits is
aggregated accordingly.

V. RQ1: SECURITY COMPONENT DEFINITION

In Tab. II, we present an overview of the dataset, where
we classify APIs and their commits based on whether a
security component has been detected or not. For APIs and
commits with a security component we also further split the
classification depending on the specification language version.
38.6% of the APIs have in their history at least one commit
where the specification contains a security component, totaling
433 288 commits, while 36% of the API consistently include
security component definitions in all of their commits. The
majority of APIs (61.6%) however never had a defined security
component in their whole commit history. If we compare
Swagger (OAS2.0) vs OpenAPI (OAS3.0), we find a larger
set of artifacts that use security in the more recent version of
the API specification language.

The different types of security schemes that have been
defined in our dataset are listed in Table III where we consider
the types of security schemes in both APIs and commits. We
note that developers have the tendency to adopt the security

scheme apikey, which appears in 214 987 commits of 54 647
APIs. There is also a tendency towards the frequent use of
oauth2 in both OAS2.0 and OAS3.0 versions. Still, the
HTTP basic scheme was only the third choice for APIs
documented with OAS 2.0, but after it was renamed to http
it became the most frequent scheme among the commits of
OAS 3.0 descriptions. For the rest of the schemes introduced
in OAS 3.0, such as OpenIdConnect or mutualTLS, we
notice significantly less uptake.

VI. RQ2: GRANULARITY LEVELS

A. Granularity levels of commits using OAS 2.0 vs. OAS 3.0

Once the decision to introduce security components in the
API documentation has been made for 47% of the commits
(Tab. II), the next decision involves whether the security
component should be applied globally to the entire API or
locally to specific API operations. In Tab. IV we present a
detailed classification of those commits based on the classes
defined in Section IV-A.

The smallest classes include 0.3% (C-No-Paths) and 0.5%
(GSec-No-Paths) of the commits, which include a security
component but do not list any endpoint paths. These might
represent documentation templates with default security set-
tings, or API specifications still at the initial stage of the
API documentation evolution. The majority of commits (66%)
presents an API whose entire surface is protected by some se-
curity scheme. This is achieved following different approaches.
For example, the most common one (32%) introduces security
globally and uniformly across the whole API (GSec), while
27% annotate each and every endpoint with a security property
(FLSec). Some API designers instead choose to only partially
cover the API endpoints with security annotations (26%). In
Section VII, we study more in detail this class by measuring
exactly how many operations do not use security.

When comparing how the constraint of using OAS 2.0 or
OAS 3.0 to document the API impacts the granularity level
decision, we see that – relatively speaking – partial coverage
is more frequent with OAS 2.0 (30% vs. 24%), while security
is introduced globally in 41% of the commits for OAS 3.0,
and only in 32% for OAS 2.0. The complete lack of security
coverage (NoSec) is on a similar level for both versions.

B. APIs Classification by Granularity Level

We classify the API by the different combinations of granu-
larity levels in their histories. In Fig. 1, we plot the distribution
of the number of APIs and the number of API commits across
the number of combined granularity levels. More in detail, in
Tab. V we list the commonly used granularity level that has
been used in at least one commit in the API history. While
many APIs fall under the UndefSec class because in all their
commits no security component was ever defined, we found
that 6 242 APIs (totaling 96 093 commits) have commits that
have security components and other commits that fall into
the other categories where a security component exists and
either not applied (1 169 APIs, 15 336 commits), or applied
at some level (4 732 APIs, 72 122 commits). There

Table IV: Classification of API Commits Based on Security
Granularity Levels

Class OAS 2.0 OAS 3.0 OAS 2.0 & 3.0
#Commits % #Commits % #Commits

GFLSec 1 120 1 8 633 3 9 753
FLSec 40 809 28 77 676 27 118 485
GPLSec 3 539 2 14 895 5 18 464
GSec 41 895 29 95 756 33 137 651

PLSec 43 790 30 68 759 24 112 549
NoSec 11 598 8 21 580 7 33 178

GSec-No-Paths 830 1 875 - 1 705
C-No-Paths 1 160 1 343 - 1 503

Subtotal 144 771 288 517 433 288

UndefSec 228881 47 253819 53 482 700

Total 373 652 542 336 915 988

Number of Combined Granularity Levels

Figure 1: Number of APIs (and the total number of commits
in these APIs) combining multiple granularity levels defined
in Table I. Table V shows the number of APIs and commits
for the most common combinations.

exist also 341 APIs (totaling 8 635 commits) with a history
in which there exists at least one commit with no defined
security component , at least another one where a security
component is defined but never applied at any level , then
at least another commit where the defined security scheme is
locally applied either partially or fully .

These results indicate that most APIs remain stable accord-
ing to the granularity level classification as their maintainers
never change the decision of where and how security should
be documented. The most frequent changes involve commits
completely lacking security documentation and commits with
security documented at some level.

C. Example APIs: granularity level transitions

In Fig. 2 we show 73 examples of APIs that showcase
a history with changing decisions regarding their granularity
levels. The APIs have been selected as representatives of the
classes identified in Fig. 1 with more than 3 granularity level
combinations, sorted by their occurence in distinct APIs. For
each API, by coloring the granularity level of the correspond-
ing sequence of commits, we illustrate whether the granularity
level decision remains stable from the one taken for the initial
commit (placed at the bottom) or changes through the lifetime
of the API until the most recent commit (on the top row).

API

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
om

m
it

Ti
m

e

Fu
lls

to
p

A
PI

A
go

ra
 A

PI
H

ac
kN

ew
su

bs
id

y
A

llo
ca

tio
n

A
PI

Fi
re

ba
se

 C
lo

ud
 M

es
sa

gi
ng

 H
T

T
P

...

Pr
oc

es
sM

ak
er

 A
PI

O
pc

-H
is

to
ry

-S
er

vi
ce

O
pc

-R
eg

is
tr

y-
Se

rv
ic

e

O
pc

-T
w

in
-S

er
vi

ce
T

ok
en

s
A

PI

Se
rv

er
 V

ar
ia

bl
es

FT
 L

ig
ht

ni
ng

 D
at

a
A

PI
K

in
g'

s
C

ol
le

ge
 H

os
pi

ta
l -

 P
ae

d.
.

er
xB

an
k

In
te

gr
at

io
n

Sp
ec

if
ic

at
io

ns

O
pe

n
Pr

iv
ac

y
V

au
lt

D
at

a
Pl

an
e

...
al

a-
sh

ow
ca

se
-a

pi

Pa
rt

y
R

eg
is

tr
y

Pr
ox

y
Se

rv
er

aw
sc

od
es

ta
r-

be
ta

-i
nf

ra
st

ru
ct

ur
...

ne
ur

os
to

re
 d

ra
ft

 a
pi

Pr
ox

yP
ay

 A
PI

Fu
lls

ta
ck

 V
iz

sg
ar

em
ek

 -
 O

ltó
po

...
C

SE
18

3
A

ss
ig

nm
en

t 8
 B

ac
ke

nd
Se

rv
ic

e
de

 r
és

ul
ta

t
ba

ck
en

d
H

ib
at

 A
pp

 A
PI

ch
at

ta
lk

er
 b

ac
ke

nd
m

ul
tip

ar
t-

da
ta

B
oo

km
ar

k
B

on
-A

PI

B
as

iq
 P

ay
m

en
ts

E
nd

po
in

ts
 D

an
tio

n

D
ev

bo
ok

U
se

r
Se

rv
ic

e

du
tc

h-
ac

co
un

t-
ap

p
Sc

ho
ol

 d
ir

ec
to

ry
 A

PI
T

od
o

A
PI

T
ru

ck
 V

is
it

M
an

ag
em

en
t

M
y

M
oc

k
T

ar
ge

t A
PI

C
us

to
m

s
D

ec
la

ra
tio

ns
H

SP
C

 A
PI

E
xa

m
in

at
io

n
Se

rv
ic

e
ip

in
fo

.io

Y
em

en
ex

am
 A

pi

Z
O

N
 A

pp
 A

PI
Sw

ag
ge

r
A

.f
um

e
Se

rv
er

E
m

pl
oy

ex

C
us

to
m

er
s

C
ro

ss
L

ab
 B

oo
ki

ng
 S

er
vi

ce
 R

E
ST

 ..
.

O
SU

 P
eo

pl
e/

D
ir

ec
to

ry
 A

PI
L

O
S

da
ta

 s
er

ve
r

T
yp

es
cr

ip
t p

ro
je

ct

E
xp

la
in

aB
oa

rd
bl

og
po

st
-m

ic
ro

se
rv

ic
e

A
PI

A
PI

 V
1

Pr
oj

ec
t A

PI
M

oc
k-

O
ve

ri
ge

-d
at

a
re

gi
st

ra
tie

c.
..

E
m

u
A

cc
om

A
D

H
6

A
PI

So
ci

al
ap

p
E

C
H

O
H

U
B

 A
PI

L
iz

zy
B

et
te

r
Fl

as
hC

ar
d

R
ac

er

A
dh

er
en

t

Pl
ac

es
 A

PI

B
an

ch
an

go
-A

pi
.v

3

Sw
ag

ge
r

K
er

be
ro

s
O

pe
n

So
ur

ce
...

A
ir

cn
c

M
ed

ic
ap

t A
PI

G
in

-Z
on

e-
A

pi

so
ci

al
re

vi
ew

Figure 2: Example APIs transitioning between at least four different granularity levels during their evolution history

Table V: Classification of APIs Based on Security Granularity
Levels Detected in Their History. The first column “#” counts
the number of combined granularity levels.

Granularity Level Classification #APIs #Commits

1 UndefSec 166585 443010
1 PLSec 29461 80163
1 GSec 28838 108671
1 FLSec 22176 101941
1 NoSec 7569 19996
1 GPLSec 2858 11011
1 GFLSec 1979 7315
2 UndefSec, PLSec , 1933 25624
2 UndefSec, GSec , 1626 29834
1 GSec-No-Paths 1318 1602
2 UndefSec, NoSec , 1169 15336
2 PLSec, FLSec , 842 16019
1 C-No-Sec 774 1021
2 UndefSec, FLSec , 572 5265
2 NoSec, PLSec , 495 4920
2 GSec, GPLSec , 211 4832
2 NoSec, GSec , 187 4395
2 UndefSec, GPLSec , 157 2308
2 NoSec, FLSec , 157 1356
2 PLSec, GSec , 132 1761
3 UndefSec, PLSec, FLSec , , 128 2415
3 UndefSec, NoSec, PLSec , , 116 2541

Total of 22 above classes with more than 100 APIs 269283 891336
Total of remaining 86 classes 1281 24652

Each commit is positioned on the Y axis according to
the “normalized commit time“ of the API ti = t(ci)−t(c0)

t(cN)−t(c0)

where t(ci) is the timestamp of the commit ci. This projection
preserves the commit order and makes it possible to compare
APIs with histories of different durations. The APIs are sorted
based on their initial granularity level.

We observe that the transition between the lack of security
documentation and the presence of security documentation is
not one-directional, as there are many cases of APIs which
gain security documentation as they evolve, while we also have
detected fewer APIs which shed their security documentation.

D. Granularity Levels over Time and API Size

To study whether and how the commit time affects the
granularity level decision we have segmented the classification
of the commits based on the month and year of the commit
timestamp. The resulting monthly and yearly distributions have
been visualized on the left side of Fig. 3, both in absolute
(top) and relative (bottom) terms. The commits from 2023
have not been included in the visualization as the dataset did
not include a complete crawl of GitHub for that year. We
observe a slight increase over the year of the proportion of
commits which include security documentation. In particular,
the classes GFLSec and FPLSec representing an overlap of
globally defined security with its local redefinition are more
frequently detected in recent years.

Fig. 4 precisely maps the impact of the API size on the
granularity level decision. The plot visualizes the probability
for a commit of the given number of operations to be classified
in one of the possible granularity levels. With some exceptions,
we observe that larger APIs tend to include security documen-
tation more often, while more than 50% of commits including
fewer than 5 operations completely lack security components
in their documentation.

E. Granularity Levels by HTTP methods

We observed how each operation has been secured depend-
ing on its HTTP method. Note that the classification has been
applied at the finest possible level of granularity: the PLSec
class is not applicable at the method level. Fig. 3, shows that
GET – a read-only method – is the most present one but
only secured in 50% of the cases. Operations which mutate
the state of the API (i.e., PUT, PATCH, or DELETE) are
significantly less frequent but also more often require clients to
be authenticated and authorized. Compared to the other ones,
the POST method – often used within RPC-style APIs – is
the one which lacks security documentation most frequently.

4k

5k

N
um

be
r o

f C
om

m
its

Monthly Distribution

0k

10k

20k

30k

40k

50k

Yearly Distribution

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

ns

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0.0

0.2

0.4

0.6

0.8

1.0

3k

2k

1k

0k

20
16

-0
1

20
18
-0
1

20
19
-0
1

20
17
-0
1

20
21
-0
1

20
22
-0
1

20
20
-0
1

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

0.00

0.25

0.50

0.75

1.00

N
um

be
r

of
 M

et
ho

ds
P

ro
po

rt
io

n

G
E

T

P
O

S
T

D
E

L
E

T
E

P
U

T

PA
T

C
H

Figure 3: Granularity Levels in commits over Time (left) and by HTTP methods (right)

0 50 100 150 200 250

Number of Operations
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio
ns

Figure 4: Granularity Level Probability by API Size

VII. RQ3: SECURITY COVERAGE

A. API Size-Security Coverage Correlation in Commits

To measure the total number of secured operations SO
and the proportion of covered endpoints SOC in a specific
API commit and how they correlate with the API size (Total
number of operations TO) at that moment, we draw the
density scatter plots in Figs. 5 and 6.

Fig. 5 shows that many specifications still maintain a
relatively low number of secured operations SO, even as the
total operation count increases. And, Fig. 6 reveals that the
proportion of secured operations SOC varies widely between
different API sizes, with no clear linear relationship between
the proportion of secured endpoints and the total API size.
This distribution shows clustered points at certain proportions,
suggesting that security coverage is inconsistent and often
independent of API size, with many specifications having
either very low (in the extreme case, completely missing at
0%) or very high (and often fully covered at 100%) security
coverage, regardless of the total number of operations TO.

0 100 200 300 400 500 600
Number of Secured Operations

0

200

400

600

800

To
ta

l N
um

be
r o

f O
pe

ra
tio

ns

2000

4000

6000

8000

10000

N
um

be
r o

f O
ve

rla
pp

in
g

C
om

m
its

0 10 20 30 40 50
0

10

20

30

40

50
Zoomed-In View

Figure 5: Density Scatter Plot: Number of Secured Operations
vs. API Size (Total Number of Operations)

We include both plots, as the first (Fig. 5) shows that the
number of secured operations is bound by the total number
of operations in the API. In addition, three clusters of APIs
stand out: those completely lacking security coverage aligned
on the SO = 0 vertical line, those fully covered aligned on the
SO = TO identity line. The third group is found somewhere
in the middle, with partial coverage. As APIs get smaller, the
scatter plot gets crowded - we use a density plot to reveal that
most of the specifications are located on the 0 ≤ TO ≤ SO <
10 region. Fig. 6 illustrates this in more detail this distribution
by projecting the same scatter plot over the X = SO/TO
and the same Y = TO axis. In it, the three clusters become
more clearly distinct, with SOC = 0, 0 < SOC < 1, and
SOC = 1. We also note that due to the large size of the
dataset, there are artifacts of small sizes (TO < 50) that cover
the entire range of possible security coverage values.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Secured Operations

0

200

400

600

800

To
ta

l N
um

be
r o

f O
pe

ra
tio

ns

2000

4000

6000

8000

10000

N
um

be
r o

f O
ve

rla
pp

in
g

C
om

m
its

Figure 6: Security Coverage (Proportion of Secured Opera-
tions) vs. API Size (Total Number of Operations)

100 0 100 200 300
Change in Total Number of Operations

50

0

50

100

150

200

250

C
ha

ng
e

in
 N

um
be

r o
f S

ec
ur

ed
 O

pe
ra

tio
ns

On Diagonal (y=x) [550 APIs]
Above Diagonal (y>x) [321 APIs]
Below Diagonal (y<x, excludes y=0) [431 APIs]
On Horizontal Line (y=0) [939 APIs]
At (0, 0) [201 APIs]

Figure 7: Secured Operation Change (∆SO) depending on
the API Size Change (∆TO) across the whole API history
for every API with more than 10 commits

B. Size-Security Coverage changes across entire API history

We consider the changes across the entire history of the API,
comparing the SO and TO metrics of the last commit against
the first commit to study whether APIs which grow larger
or shrink, also maintain, degrade, or improve their security
coverage. In Fig. 7 we compare the ∆TO (change of number

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Correlation Coefficient

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r o

f A
PI

s

Figure 8: Distributions of the correlation between the number
of operations TO and the number of secured operations SO in
API commits excluding APIs where the (TO, SO) is constant
during the whole history composed of at least 50 commits

operations) against the ∆SO (change of number of secured
operations) for each API with more than 10 commits. Overall,
the tendency is towards positive growth, i.e., APIs tend to grow
larger and also increase the number of security endpoints. We
can distinguish different clusters: 1) Static APIs (x = 0, y =
0) which never change their size or the number of secured
operations; 2) APIs whose size variation is identically reflected
in the number of operations with security documentation (y =
x); 3) APIs where the change in size is not reflected at all
in the number of secured operations (y = 0); 4) APIs which
degrade the security coverage as they grow, since the number
of secured operations does not grow as much as their size
(y < x); 5) APIs which improve the security coverage (y > x).
We show the number of APIs present in each cluster in the
legend of Fig. 7. There are some very rare cases in which the
API growth corresponds to a net decrease in the number of
secured operations, or in which the API size decreases but the
number of secured operations increases. We observe only 165
cases in which the API size remains the same (x = 0) but the
number of secured operations changes (y ̸= 0).

C. Changes of security coverage over time

Tab. VI shows that APIs with more than 10 commits exhibit
modest improvements in security coverage over time, with
an average increase of 9% from the first to the last commit.
While some APIs achieve full coverage, many start and remain
unsecured, as reflected by the median initial and final security
coverage of 0% and 34%, respectively. Incremental changes
between commits are minimal, with a mean of just 1%, and
the overall daily evolution is slow, as indicated by an average
age of 445 days while a median of 0% in the average coverage
change rate per day. This highlights a level of stability in API
security coverage and a generally slow pace of improvement.
We also observe rare cases where the API becomes fully
secured (or fully unsecured) within the timeframe of one day.

When computing the correlation between SO and TO along
the history of each API with at least 50 commits, we obtain
the histogram of Fig. 8. Here we notice a strong correlation

Table VI: Statistical Analysis of Total number of Opera-
tions (TO), Number of Secured Operations (SO), Operation
Security Coverage (SOC (%)) and their Variations over the
Evolution of APIs with more than 10 commits (N > 10)

Metric Mean Median Std Dev Min Max

TO 581.61 234.00 1171.24 3.00 29111.00
∆TO: TO(cN)− TO(c0) 9.01 4.00 18.30 -644.00 346.00
δTO: TO(ci+1)− TO(ci) 0.44 0.20 0.95 -26.05 30.27

SO 302.45 30.00 924.42 0.00 23052.00
SO(c0) 6.51 0.00 17.04 0.00 668.00
SO(cN) 11.80 2.00 23.50 0.00 340.00

∆SO: SO(cN)− SO(c0) 5.29 0.00 16.14 -644.00 294.00
δSO: SO(ci+1)− SO(ci) 0.25 0.00 0.82 -21.47 22.62

SOC (%) 47 36 47 0 1
SOC(c0) (%) 37 0 46 0 1
SOC(cN) (%) 46 34 46 0 1

∆SOC: SOC(cN)− SOC(c0) (%) 9 0 32 -1 1
δSOC: SOC(ci+1)− SOC(ci) (%) 1 0 2 -11 12

Lifetime (days) 444.40 298.00 460.45 0.00 2962.00
Daily Rate of Change of SO 0.11 0.00 0.94 -12.00 34.00
Daily Rate of Change of SOC (%) 0 0 4 -1 1

1 41 81 12
1

16
1

20
1

24
1

28
1

32
1

36
1

40
1

44
1

48
1

52
1

56
1

60
1

64
1

68
1

72
1

76
1

80
1

84
1

88
1

92
1

96
1

10
01

API (sorted by total number of endpoints across API commits)

0

50

100

150

200

250

300
Nu

m
be

r o
f O

pe
ra

tio
ns

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 S
ec

ur
ed

 O
pe

ra
tio

ns

Figure 9: Evolution of API Size (Number of Operations TO) in each commit colored by security coverage (SOC). APIs
sorted by the total number of operations across all API commits

do
ck

er
 re

m
ot

e
ap

i
m

y.
m

ov
e.

m
il

lu
m

in
at

i p
ro

xy
 m

an
ag

er
m

in
te

r n
od

e
ap

i v
2

rp
c.

pr
ot

o
du

tc
h-

ac
co

un
t-a

pp
ba

by
lo

n
co

re
 a

pi
ep

ci
s 2

.0
 re

st
 b

in
di

ng
s

be
tp

ro
to

co
l a

pi
ci

liu
m

 a
pi

hi
ta

s h
el

si
nk

i a
pi

s
zo

n
ap

p
ap

i
do

ck
er

 e
ng

in
e

ap
i

ap
pr

ov
ed

 p
re

m
is

es
op

en
ap

i d
ef

in
iti

on
m

id
ga

rd
 p

ub
lic

 a
pi

fir
ef

ly
la

u
id

am
 b

ac
k-

en
d

ap
i

ku
be

rm
at

ic
 a

pi
.

bm
in

ve
nt

or
y

er
ro

r n
ot

ifi
ca

tio
n

se
rv

ic
e

m
ilm

ov
e

pr
im

e
ap

i
se

cu
rit

y
to

ke
n

se
rv

ic
e

ap
i

se
nd

 le
tte

r a
pi

ad
m

in
 a

pi
s

al
ph

au
s:

 b
lu

e
ap

i
re

se
rv

at
io

n
ap

i
se

rv
ic

e
jin

ad
 (d

ae
m

on
)

do
cs

pe
ll

or
y

kr
at

os
 a

pi
fil

e
st

or
ag

e
ap

i
de

v-
ef

-c
m

s
pa

tc
h

ad
m

in
 a

pi
ap

pq
ua

lit
ya

pi
cl

ou
d

tra
ns

la
tio

n
ap

i
lic

he
ss

.o
rg

 a
pi

 re
fe

re
nc

e
cl

ou
d

te
xt

-to
-s

pe
ec

h
ap

i
re

co
m

m
en

de
r a

pi
cl

ou
d

as
se

t a
pi

po
lic

y
si

m
ul

at
or

 a
pi

po
lic

y
an

al
yz

er
 a

pi
gm

ai
l p

os
tm

as
te

r t
oo

ls
 a

pi
cl

ou
d

da
ta

 fu
si

on
 a

pi
cl

ou
d

do
m

ai
ns

 a
pi

se
cr

et
 m

an
ag

er
 a

pi
da

ta
ba

se
 m

ig
ra

tio
n

ap
i

cl
ou

d
ta

sk
s a

pi
re

al
-ti

m
e

bi
dd

in
g

ap
i

w
or

kf
lo

w
 m

ic
ro

se
rv

ic
e

cl
ou

d
re

so
ur

ce
 m

an
ag

er
 a

pi
w

or
kf

lo
w

 e
xe

cu
tio

ns
 a

pi
pl

at
fo

rm
 re

st
 a

pi
s

ce
rti

fic
at

e
au

th
or

ity
 a

pi
ar

tif
ac

t r
eg

is
try

 a
pi

ev
en

ta
rc

 a
pi

co
nt

ai
ne

r a
na

ly
si

s
co

nt
ai

ne
r a

na
ly

si
s a

pi
xe

ro
 p

ay
ro

ll
uk

se
rv

ic
e

di
re

ct
or

y
ap

i
cl

ou
d

de
pl

oy
m

en
t m

an
ag

er
 v

2
ap

...
cl

ou
d

ru
nt

im
e

co
nf

ig
ur

at
io

n
ap

...
cl

ou
d

co
m

po
se

r
til

ed
b

st
or

ag
e

pl
at

fo
rm

 a
pi

op
en

 fo
rm

s a
pi

le
ad

 a
pi

fin
ve

rs
e

pu
bl

ic
fo

rti
fi

ap
i

fu
lfi

llm
en

tto
ol

s a
pi

 fo
r t

en
an

... at
s

fin
bo

ur
ne

 sc
he

du
le

r a
pi

fin
bo

ur
ne

 c
on

fig
ur

at
io

ns
er

vi
ce

...
vt

ex
 -

lo
gi

st
ic

s a
pi

pr
ox

y
ap

i
un

it2
1

cu
st

om
er

 d
at

a
en

dp
oi

nt
s

pa
tc

hm
an

-e
ng

in
e

ap
i

ar
go

vi
s a

pi
cy

br
id

 o
rg

an
iz

at
io

n
ap

i
pa

go
pa

 a
pi

 c
on

fig
ur

at
io

n
w

ea
vi

at
e

- s
em

an
tic

 g
ra

ph
ql

, r
...

da
ta

do
g

ap
i v

2
co

lle
ct

io
n

cy
br

id
 id

en
tit

y
ap

i
w

eb
ho

ok
 a

pi
hr

is
co

sm
o

te
ch

 p
la

fo
rm

 a
pi

ka
nd

a
se

rv
ic

e
- a

pi
 sc

he
m

a
fin

bo
ur

ne
 d

riv
e

ap
i

m
ar

ke
tp

la
ce

 a
pi

s
ap

i r
ef

er
en

ce
ai

rb
yt

e
co

nf
ig

ur
at

io
n

ap
i

fin
bo

ur
ne

 n
ot

ifi
ca

tio
ns

 a
pi

fin
bo

ur
ne

 id
en

tit
y

se
rv

ic
e

ap
i

da
ta

do
g

ap
i c

ol
le

ct
io

n
al

fr
es

co
 c

or
e

re
st

 a
pi

cr
m

 a
pi

ci
rc

le
ci

 a
pi

[b
et

a]
 q

ov
er

y
ap

i
fin

bo
ur

ne
 h

on
ey

co
m

b
w

eb
 a

pi
cy

br
id

 b
an

k
ap

i

API

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
om

m
it

Ti
m

e

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 S
ec

ur
ed

 O
pe

ra
tio

ns

Figure 10: Evolution of security coverage during the lifetime of APIs with more than 100 commits, sorted by the security
coverage in the first commit

between API size and its security coverage for the vast
majority of APIs. We purposefully exclude from the histogram
the APIs which do not change SO and TO during their history,
since they would also contribute to the strong correlation.

We illustrate more in detail this relationship with Fig. 9
representing a side-by-side comparison of the history of a
sample of more than 1000 APIs selected due to having more
than 50 commits in their history. Each point along the y-axis
corresponds to a commit in the API history, vertically placed
according to the API size (TO) and colored according to the
security coverage (SOC). While the previous scatter plots
(Figs. 5 and 6) mix together every commit of every API in the
dataset, here we study the evolution of each API separately,
but also visually compare the relationship between size and
security coverage across APIs with different histories with an
appropriate ordering of the APIs on the X axis.

What stands out from the visualization of Fig. 9 is that
when analyzing the history of each API separately, the security
coverage appears to increase with the API size – as witnessed
by the strong correlation of Fig. 8. The visualization highlights
the lack of security coverage in commits of decreasingly
small sizes, while above a certain size threshold, the APIs are
fully covered with security documentation. This visualization,
however, does not consider the order of commits in time, thus

it is not possible to observe whether security documentation is
added as APIs grow larger, or removed as they grow smaller.

The time dimension is introduced on the Y axis of Fig 10,
where again different API commit histories are plotted side by
side. To reduce clutter, we filter 172 APIs that have more than
100 commits in their histories and sort them by the SOC(c0)
amount of security coverage measured in the first commit.
We see APIs that initially have high security coverage on
the right, and APIs initially lacking security documentation
on the left. The visualization confirms the tendency towards
stability with many APIs carrying security documentation or
consistently lacking security documentation throughout their
entire lifecycle. However, we also see examples of APIs in
which security documentation is added after the first commit,
or removed at some point, and even added again.

VIII. DISCUSSION

The results presented in the previous sections give an in
depth view over how two versions of the OpenAPI standard
API description language are used to document security in-
formation in a large collection of artifacts mined from open
source repositories. We classified individual commits as well
as compared how different API evolve w.r.t. how security
aspects are documented along their history.

RQ1 Being an optional validity requirement of an OAS
document, security components are detected in only 38.6%
of APIs (104,606 APIs), comprising 433,288 commits. APIs
documented with OpenAPI 3.0 (OAS 3.0) demonstrate a
higher prevalence of security components, with 32% of com-
mits (288,517) including security compared to 16% (144,771)
in Swagger 2.0 (OAS 2.0). However, 61.6% of APIs never
included a security component throughout their history. The
lack of security documentation does not imply that the API
implementation itself does not actually make use of any
authorization and authentication mechanisms, but only that
these have not been explicitly described in the corresponding
API specification.

The higher percentage of specifications with security docu-
mentation in OAS 3.0 compared to OAS 2.0 can be attributed
to the enhancements introduced in OAS3.0 These improve-
ments include increased modularity in documentation and
better support for defining and organizing security schemes,
such as “OAuth2”, as detailed in Section II.
RQ2 The Security granularity level classification reveals that
while 32% of commits follow a simpler strategy by applying
security globally (GSec), 27% annotate every endpoint with
local security (FLSec), allowing developers to implement
custom configurations to address particular requirements or
unique use cases even to address fine-grained access control.
Hybrid strategies, such as the combination of global and partial
local security (GPLSec or GFLSec), are less frequent
but increasingly used in recent years. Partial coverage is more
frequent in OAS 2.0 (30%) than in OAS 3.0 (24%). Granularity
levels remain stable across most of API histories, with cases of
changes occurring primarily between commits lacking security
and those adopting it (in both directions).
RQ3 When studying individual artifacts, the API size does
not correlate with security coverage, as there are clearly three
clusters of commits, the ones with no security coverage at
all, the ones with full coverage, and the intermediate ones.
When analyzing the history of each API, however, it appears
that APIs tend to include security documentation as they grow
larger. The high correlation of a large subset of APIs between
their size and security coverage maintaned over a large number
of commits can be explained by the impact of the global
security definition, which – when introduced – brings the two
metrics to the same value. We also observe a general stability
trend when considering the security coverage over time: when
adding or removing endpoints from an API, the proportion
of operations covered with security documentation remains
similar.

IX. THREATS TO VALIDITY

1) Construct Validity.: The presence of security-related
documentation is detected with standard OpenAPI constructs.
The paper focuses on studying the decision on how and
where to introduce security schemes in the API specification,
both qualitatively and quantitatively [20]. Other approaches
to detect and study how security is documented in OpenAPI
may be possible, e.g., based on natural language processing

of textual descriptions [14] or the deployment context of the
API by analyzing API gateway security settings.

2) Internal Validity.: Building the classifications required a
systematic analysis to detect the presence or absence of the
security scheme implemented under the Open API standard
in each commit. While the detectors have been extensively
tested and applied to a very large number of artifacts, they are
assumed to run against standard compliant OpenAPI specifica-
tions. While we exclude by construction the presence of false
positives, it may be possible that the results underestimate the
APIs classified to feature security-related documentation due
to true negatives. As mentioned above, the APIs classified as
lacking security documentation may contain such information
with a non-standard representation or do so using natural
language descriptions.

3) External Validity.: The study conducted for a wide
selection of APIs hosted in public GitHub repositories may
consider APIs that are no longer actively maintained or have
descriptions that are not yet fully developed and released. This
concern affects the generalization of the study results.

X. CONCLUSION AND FUTURE WORK

This study analyzed 915 988 OpenAPI descriptions from
270 564 distinct APIs, focusing on detecting security docu-
mentation practices and their evolution. Although a substantial
portion of APIs (62%) lack any security documentation, those
that do include security components tend to favor global
security schemes, applying protection uniformly across all
endpoints. OpenAPI 3.0 specifications show a greater adoption
of security documentation than in Swagger 2.0. However,
even among APIs with extensive histories, security coverage
improvements are modest, with many APIs starting and re-
maining largely without security documentation.

Thanks to the large dataset analyzed, we could systemati-
cally establish and empirically validate a detailed and complete
classification of the granularity levels of adoption of security
schemes for each commit, path, and operation. Assessing
adoption trends in API documentation provided a broader per-
spective on how designers are applying the OpenAPI standard
to document their security-related design decisions.

Given some results observed (e.g., the widespread lack
of security documentation for critical operations making use
of HTTP methods such as POST or DELETE), this paper
motivates further work in further developing API model
analysis tools that can not only highlight but also correct
such gaps in security documentation as they may indicate
potential vulnerabilities of the corresponding API. We are
also exploring how documented security scheme classification
levels relate to the purpose of the endpoint in the API, whether
the endpoint exposes access to sensitive data or critical actions,
encompassing both business or system management endpoints.

ACKNOWLEDGEMENTS

This work was supported by the SNF with the API-ACE
project 184692.

REFERENCES

[1] OpenAPI Initiative. https://www.openapis.org/.
[2] Esi Adeborna and Kenneth K Fletcher. An empirical study

of web API quality formulation. In Proc. 17th International
Conference on Services Computing (SCC), pages 145–153.
Springer, 2020.

[3] Sultan S Alqahtani, Ellis E Eghan, and Juergen Rilling. Re-
covering semantic traceability links between apis and security
vulnerabilities: An ontological modeling approach. In Proc.
International Conference on Software Testing, Verification and
Validation (ICST), pages 80–91. IEEE, 2017.

[4] David Bermbach and Erik Wittern. Benchmarking web api
quality-revisited. Journal of Web Engineering, 19(5-6):603–646,
2020.

[5] Carmen Cheh and Binbin Chen. Analyzing openapi specifica-
tions for security design issues. In Proc. Secure Development
Conference (SecDev), pages 15–22. IEEE, 2021.

[6] Hsiao-Jung Chen, Shang-Pin Ma, and Hsueh-Cheng Lu. Col-
laborative security annotation and online testing for web apis.
In Proc. International Conference on e-Business Engineering
(ICEBE), pages 9–15. IEEE, 2021.

[7] Mengsu Chen, Felix Fischer, Na Meng, Xiaoyin Wang, and Jens
Grossklags. How reliable is the crowdsourced knowledge of
security implementation? In Proc. 41st International Conference
on Software Engineering (ICSE), pages 536–547. IEEE/ACM,
2019.

[8] Josué Alejandro Dı́az-Rojas, Jorge Octavio Ocharán-Hernández,
Juan Carlos Pérez-Arriaga, and Xavier Limón. Web api security
vulnerabilities and mitigation mechanisms: A systematic map-
ping study. In Proc. 9th International Conference in Software
Engineering Research and Innovation (CONISOFT), pages 207–
218. IEEE, 2021.

[9] Mario Dudjak and Goran Martinović. An api-first methodol-
ogy for designing a microservice-based backend as a service
platform. Information Technology and Control, 49(2):206–223,
2020.

[10] Daniel Fett, Ralf Küsters, and Guido Schmitz. A comprehensive
formal security analysis of oauth 2.0. In Proc. ACM SIGSAC
conference on computer and communications security, pages
1204–1215, 2016.

[11] Daniel Fett, Ralf Küsters, and Guido Schmitz. The web
sso standard openid connect: In-depth formal security analysis
and security guidelines. In Proc. 30th Computer Security
Foundations Symposium (CSF), pages 189–202. IEEE, 2017.

[12] Pascal Gadient, Mohammad Ghafari, Marc-Andrea Tarnutzer,
and Oscar Nierstrasz. Web apis in android through the lens
of security. In Proc. 27th international conference on software
analysis, evolution and reengineering (SANER), pages 13–22.
IEEE, 2020.

[13] Patric Genfer, Souhaila Serbout, Georg Simhandl, Uwe Zdun,
and Cesare Pautasso. Understanding security tactics in mi-
croservice apis using annotated software architecture decom-
position models – a controlled experiment. Empirical Software
Engineering, 2025. (to appear).

[14] César González-Mora, Cristina Barros, Irene Garrigós, Jose
Zubcoff, Elena Lloret, and Jose-Norberto Mazón. Improving
open data web API documentation through interactivity and
natural language generation. Computer Standards & Interfaces,
83:103657, 2023.

[15] Peter Leo Gorski, Sebastian Möller, Stephan Wiefling, and
Luigi Lo Iacono. “I just looked for the solution!” on integrating
security-relevant information in non-security api documentation
to support secure coding practices. IEEE Transactions on
Software Engineering, 48(9):3467–3484, 2021.

[16] Matthew Green and Matthew Smith. Developers are not the
enemy!: The need for usable security apis. IEEE Security &

Privacy, 14(5):40–46, 2016.
[17] Fatima Hussain, Rasheed Hussain, Brett Noye, and Salah

Sharieh. Enterprise API security and GDPR compliance: Design
and implementation perspective. IT professional, 22(5):81–89,
2020.

[18] IETF OAuth Working Group. Oauth 2.0. https://oauth.net/2/.
[19] Stefan Karlsson, Adnan Čaušević, and Daniel Sundmark.

Quickrest: Property-based test generation of openapi-described
restful apis. In 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pages
131–141. IEEE, 2020.

[20] Basel Katt and Nishu Prasher. Quantitative security assurance
metrics: REST API case studies. In Companion Proc. 12th
European Conference on Software Architecture (ECSA), pages
1–7, 2018.

[21] István Koren and Ralf Klamma. The exploitation of ope-
napi documentation for the generation of web frontends. In
Companion proceedings of the the web conference 2018, pages
781–787, 2018.

[22] Alexander Lercher, Johann Glock, Christian Macho, and Martin
Pinzger. Microservice API evolution in practice: A study on
strategies and challenges. Journal of Systems and Software,
215:112110, 2024.

[23] Hongqian Karen Lu. Keeping your API keys in a safe. In
Proc. 7th International Conference on Cloud Computing, pages
962–965. IEEE, 2014.

[24] Neil Madden. API security in action. Simon and Schuster,
2020.

[25] Maria Maleshkova, Carlos Pedrinaci, and John Domingue. In-
vestigating web APIs on the world wide web. In Proc. 8th
European Conference on Web Services (ECOWS), pages 107–
114. IEEE, 2010.

[26] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés.
Test coverage criteria for RESTful web APIs. In Proc. 10th
ACM SIGSOFT International Workshop on Automating TEST
Case Design, Selection, and Evaluation (A-TEST), pages 15–
21, 2019.

[27] Chris Parnin and Christoph Treude. Measuring API documen-
tation on the web. In Proceedings of the 2nd international
workshop on Web 2.0 for software engineering, pages 25–30,
2011.

[28] Souhaila Serbout and Cesare Pautasso. APIstic: A large
collection of OpenAPI metrics. In Proc. 21st International
Conference on Mining Software Repositories (MSR), Lisbon,
Portugal, April 2024. IEEE/ACM.

[29] Souhaila Serbout and Cesare Pautasso. How are web apis
versioned in practice? a large-scale empirical study. Journal
of Web Engineering, 23:465–506, August 2024.

[30] Souhaila Serbout, Fabio Di Lauro, and Cesare Pautasso. Web
APIs structures and data models analysis. In Companion Proc.
19th International Conference on Software Architecture (ICSA),
pages 84–91. IEEE, 2022.

[31] Prabath Siriwardena. Mutual authentication with TLS. In
Advanced API Security: Securing APIs with OAuth 2.0,
OpenID Connect, JWS, and JWE, pages 47–58. Springer, 2014.

[32] Peter E Snyder. Improving Web Privacy And Security with a
Cost-Benefit Analysis of the Web API. PhD thesis, University
of Illinois at Chicago, 2018.

[33] Pei Wang, Julian Bangert, and Christoph Kern. If it’s not
secure, it should not compile: Preventing DOM-based XSS in
large-scale web development with API hardening. In Proc.
43rd International Conference on Software Engineering (ICSE),
pages 1360–1372. IEEE, 2021.

[34] Ying Zhang, Md Mahir Asef Kabir, Ya Xiao, Danfeng Yao,
and Na Meng. Automatic detection of Java cryptographic API
misuses: Are we there yet? IEEE Transactions on Software

https://www.openapis.org/
https://oauth.net/2/

Engineering, 49(1):288–303, 2022.
[35] Mingyi Zhao, Aron Laszka, and Jens Grossklags. Devising

effective policies for bug-bounty platforms and security vul-
nerability discovery. Journal of Information Policy, 7:372–418,
2017.

[36] Olaf Zimmermann, Mirko Stocker, Daniel Lubke, Uwe Zdun,
and Cesare Pautasso. Patterns for API design: simplifying
integration with loosely coupled message exchanges. Addison-
Wesley Professional, 2022.

	Introduction
	Background
	OpenAPI Security Components and Schemes
	Security Documentation in Swagger 2.0 vs. OpenAPI 3.0

	Related Work
	Definitions
	Security coverage granularity
	Globally secured (GSec)
	Locally Secured
	Hybrid Combinations
	Lack of security definitions

	Security Coverage Metrics
	API Evolution and Security

	RQ1: Security component definition
	RQ2: Granularity Levels
	Granularity levels of commits using OAS 2.0 vs. OAS 3.0
	APIs Classification by Granularity Level
	Example APIs: granularity level transitions
	Granularity Levels over Time and API Size
	Granularity Levels by HTTP methods

	RQ3: Security coverage
	API Size-Security Coverage Correlation in Commits
	Size-Security Coverage changes across entire API history
	Changes of security coverage over time

	Discussion
	Threats to Validity
	Construct Validity.
	Internal Validity.
	External Validity.

	Conclusion and Future Work

